These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19412982)

  • 21. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of movement-related potentials using a fractal approach.
    Uşakli AB
    J Comput Neurosci; 2010 Jun; 28(3):595-603. PubMed ID: 20449765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Hilbert-Huang transform for the study of motor imagery tasks.
    Wang L; Xu G; Wang J; Yang S; Yan W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3848-51. PubMed ID: 19163552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of competitive Hopfield neural network to brain-computer interface systems.
    Hsu WY
    Int J Neural Syst; 2012 Feb; 22(1):51-62. PubMed ID: 22262524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bridging the gap between motor imagery and motor execution with a brain-robot interface.
    Bauer R; Fels M; Vukelić M; Ziemann U; Gharabaghi A
    Neuroimage; 2015 Mar; 108():319-27. PubMed ID: 25527239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.
    Miao M; Zeng H; Wang A; Zhao C; Liu F
    J Neurosci Methods; 2017 Feb; 278():13-24. PubMed ID: 28012854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Embedded prediction in feature extraction: application to single-trial EEG discrimination.
    Hsu WY
    Clin EEG Neurosci; 2013 Jan; 44(1):31-8. PubMed ID: 23248335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy.
    Li T; Hong J; Zhang J; Guo F
    J Neurosci Methods; 2014 Mar; 224():26-38. PubMed ID: 24333753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Analysis and research of brain-computer interface experiments for imaging left-right hands movement].
    Wu Y; He Q; Huang H; Zhang L; Zhuo Y; Xie Q; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):983-8. PubMed ID: 19024431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cognitive tasks for driving a brain-computer interfacing system: a pilot study.
    Curran E; Sykacek P; Stokes M; Roberts SJ; Penny W; Johnsrude I; Owen AM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):48-54. PubMed ID: 15068187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal.
    Hosseinifard B; Moradi MH; Rostami R
    Comput Methods Programs Biomed; 2013 Mar; 109(3):339-45. PubMed ID: 23122719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.
    Lu N; Li T; Ren X; Miao H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):566-576. PubMed ID: 27542114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of ictal and interictal EEG signals using fractal features.
    Wang Y; Zhou W; Yuan Q; Li X; Meng Q; Zhao X; Wang J
    Int J Neural Syst; 2013 Dec; 23(6):1350028. PubMed ID: 24156671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns.
    Kim Y; Ryu J; Kim KK; Took CC; Mandic DP; Park C
    Comput Intell Neurosci; 2016; 2016():1489692. PubMed ID: 27795702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.