These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19413316)

  • 1. An electrochemical sensor for the detection of protein-small molecule interactions directly in serum and other complex matrices.
    Cash KJ; Ricci F; Plaxco KW
    J Am Chem Soc; 2009 May; 131(20):6955-7. PubMed ID: 19413316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric kissing complex-based electrochemical biosensor for sensitive, regenerative and versatile detection of proteins.
    Zhao M; Zhang S; Chen Z; Zhao C; Wang L; Liu S
    Biosens Bioelectron; 2018 May; 105():42-48. PubMed ID: 29351869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the Scope of Protein-Detecting Electrochemical DNA "Scaffold" Sensors.
    Kang D; Parolo C; Sun S; Ogden NE; Dahlquist FW; Plaxco KW
    ACS Sens; 2018 Jul; 3(7):1271-1275. PubMed ID: 29877078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of background reduction with rolling circle amplification for highly sensitive protein detection via terminal protection of small molecule-linked DNA.
    Wang Q; Jiang B; Xie J; Xiang Y; Yuan R; Chai Y
    Analyst; 2013 Oct; 138(19):5751-6. PubMed ID: 23907287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.
    Xia N; Zhang Y; Wei X; Huang Y; Liu L
    Anal Chim Acta; 2015 Jun; 878():95-101. PubMed ID: 26002330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets.
    Liu G; Wan Y; Gau V; Zhang J; Wang L; Song S; Fan C
    J Am Chem Soc; 2008 May; 130(21):6820-5. PubMed ID: 18459781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene nanogap electrodes in electrical biosensing.
    Terse-Thakoor T; Ramnani P; Villarreal C; Yan D; Tran TT; Pham T; Mulchandani A
    Biosens Bioelectron; 2019 Feb; 126():838-844. PubMed ID: 30602266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding- and Dynamics-Based Electrochemical DNA Sensors.
    Lai RY
    Methods Enzymol; 2017; 589():221-252. PubMed ID: 28336065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices.
    Zuo X; Xiao Y; Plaxco KW
    J Am Chem Soc; 2009 May; 131(20):6944-5. PubMed ID: 19419171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins.
    Ricci F; Bonham AJ; Mason AC; Reich NO; Plaxco KW
    Anal Chem; 2009 Feb; 81(4):1608-14. PubMed ID: 19199570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen.
    Wen W; Huang JY; Bao T; Zhou J; Xia HX; Zhang XH; Wang SF; Zhao YD
    Biosens Bioelectron; 2016 Sep; 83():142-8. PubMed ID: 27111123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probe-labeled electrochemical approach for highly selective detection of 5-carboxycytosine in DNA.
    Zhao M; Zou G; Tang J; Guo J; Wang F; Chen Z
    Anal Chim Acta; 2023 Sep; 1273():341521. PubMed ID: 37423653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free electrochemical immunosensor based on biocompatible nanoporous Fe
    Wang Y; Zhao G; Wang H; Zhang Y; Zhang N; Wei D; Feng R; Wei Q
    Analyst; 2020 Feb; 145(4):1368-1375. PubMed ID: 31994546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
    White RJ; Rowe AA; Plaxco KW
    Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection.
    Zhao J; Chen C; Zhang L; Jiang J; Yu R
    Biosens Bioelectron; 2012; 36(1):129-34. PubMed ID: 22575639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive electrochemical detection of Bacillus thuringiensis transgenic sequence based on in situ Ag nanoparticles aggregates induced by biotin-streptavidin system.
    Jiang X; Chen K; Han H
    Biosens Bioelectron; 2011 Oct; 28(1):464-8. PubMed ID: 21821408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper-based electrochemiluminescence determination of streptavidin using reticular DNA-functionalized PtCu nanoframes and analyte-triggered DNA walker.
    Huang Y; Zhang L; Zhang S; Zhao P; Li L; Ge S; Yu J
    Mikrochim Acta; 2020 Aug; 187(9):530. PubMed ID: 32860548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemical enzyme bioaffinity electrode based on biotin-streptavidin conjunction and bienzyme substrate recycling for amplification.
    Yuan Y; Yuan R; Chai Y; Zhuo Y; Bai L; Liao Y
    Anal Biochem; 2010 Oct; 405(1):121-6. PubMed ID: 20507824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAMAM dendrimers: A multifunctional nanomaterial for ECL biosensors.
    Chandra S; Mayer M; Baeumner AJ
    Talanta; 2017 Jun; 168():126-129. PubMed ID: 28391831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.