These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19413337)

  • 1. Turbidity-corrected Raman spectroscopy for blood analyte detection.
    Barman I; Singh GP; Dasari RR; Feld MS
    Anal Chem; 2009 Jun; 81(11):4233-40. PubMed ID: 19413337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose.
    Barman I; Kong CR; Dingari NC; Dasari RR; Feld MS
    Anal Chem; 2010 Dec; 82(23):9719-26. PubMed ID: 21050004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of photobleaching on calibration model development in biological Raman spectroscopy.
    Barman I; Kong CR; Singh GP; Dasari RR
    J Biomed Opt; 2011; 16(1):011004. PubMed ID: 21280891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations.
    Shih WC; Bechtel KL; Feld MS
    Opt Express; 2008 Aug; 16(17):12726-36. PubMed ID: 18711511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy.
    Dingari NC; Barman I; Kang JW; Kong CR; Dasari RR; Feld MS
    J Biomed Opt; 2011 Aug; 16(8):087009. PubMed ID: 21895336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications.
    Bechtel KL; Shih WC; Feld MS
    Opt Express; 2008 Aug; 16(17):12737-45. PubMed ID: 18711512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy for noninvasive glucose measurements.
    Enejder AM; Scecina TG; Oh J; Hunter M; Shih WC; Sasic S; Horowitz GL; Feld MS
    J Biomed Opt; 2005; 10(3):031114. PubMed ID: 16229639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra.
    Ren M; Arnold MA
    Anal Bioanal Chem; 2007 Feb; 387(3):879-88. PubMed ID: 17200856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Raman spectroscopy in turbid media.
    Reble C; Gersonde I; Andree S; Eichler HJ; Helfmann J
    J Biomed Opt; 2010; 15(3):037016. PubMed ID: 20615045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive glucose sensing by transcutaneous Raman spectroscopy.
    Shih WC; Bechtel KL; Rebec MV
    J Biomed Opt; 2015 May; 20(5):051036. PubMed ID: 25688542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reagentless blood analysis by near-infrared Raman spectroscopy.
    Koo TW; Berger AJ; Itzkan I; Horowitz G; Feld MS
    Diabetes Technol Ther; 1999; 1(2):153-7. PubMed ID: 11475287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements.
    Dingari NC; Barman I; Singh GP; Kang JW; Dasari RR; Feld MS
    Anal Bioanal Chem; 2011 Jul; 400(9):2871-80. PubMed ID: 21509482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy.
    Berger AJ; Itzkan I; Feld MS
    Spectrochim Acta A Mol Biomol Spectrosc; 1997 Feb; 53A(2):287-92. PubMed ID: 9097902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber.
    Qi D; Berger AJ
    Appl Opt; 2006 Jan; 45(3):489-94. PubMed ID: 16463733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.
    Pandey R; Paidi SK; Valdez TA; Zhang C; Spegazzini N; Dasari RR; Barman I
    Acc Chem Res; 2017 Feb; 50(2):264-272. PubMed ID: 28071894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy.
    Sivakesava S; Irudayaraj J; Demirci A
    J Ind Microbiol Biotechnol; 2001 Apr; 26(4):185-90. PubMed ID: 11464265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcutaneous Raman spectroscopy of murine bone in vivo.
    Schulmerich MV; Cole JH; Kreider JM; Esmonde-White F; Dooley KA; Goldstein SA; Morris MD
    Appl Spectrosc; 2009 Mar; 63(3):286-95. PubMed ID: 19281644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-contact detection of ciprofloxacin in a model anterior chamber using Raman spectroscopy.
    Sideroudi T; Pharmakakis N; Tyrovolas A; Papatheodorou G; Chryssikos GD; Voyiatzis GA
    J Biomed Opt; 2007; 12(3):034005. PubMed ID: 17614713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative reagent-free detection of fibrinogen levels in human blood plasma using Raman spectroscopy.
    Poon KW; Lyng FM; Knief P; Howe O; Meade AD; Curtin JF; Byrne HJ; Vaughan J
    Analyst; 2012 Apr; 137(8):1807-14. PubMed ID: 22382127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomedical tissue phantoms with controlled geometric and optical properties for Raman spectroscopy and tomography.
    Esmonde-White FW; Esmonde-White KA; Kole MR; Goldstein SA; Roessler BJ; Morris MD
    Analyst; 2011 Nov; 136(21):4437-46. PubMed ID: 21912794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.