These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Gandaglia A; Bagno A; Naso F; Spina M; Gerosa G Eur J Cardiothorac Surg; 2011 Apr; 39(4):523-31. PubMed ID: 21163670 [TBL] [Abstract][Full Text] [Related]
4. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Breuer CK; Mettler BA; Anthony T; Sales VL; Schoen FJ; Mayer JE Tissue Eng; 2004; 10(11-12):1725-36. PubMed ID: 15684681 [TBL] [Abstract][Full Text] [Related]
5. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling. Rabkin E; Hoerstrup SP; Aikawa M; Mayer JE; Schoen FJ J Heart Valve Dis; 2002 May; 11(3):308-14; discussion 314. PubMed ID: 12056720 [TBL] [Abstract][Full Text] [Related]
6. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Schoen FJ Circulation; 2008 Oct; 118(18):1864-80. PubMed ID: 18955677 [TBL] [Abstract][Full Text] [Related]
7. Current Status of Tissue Engineering Heart Valve. Shinoka T; Miyachi H World J Pediatr Congenit Heart Surg; 2016 Nov; 7(6):677-684. PubMed ID: 27834758 [TBL] [Abstract][Full Text] [Related]
8. Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Apte SS; Paul A; Prakash S; Shum-Tim D Future Cardiol; 2011 Jan; 7(1):77-97. PubMed ID: 21174513 [TBL] [Abstract][Full Text] [Related]
9. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Sodian R; Lueders C; Kraemer L; Kuebler W; Shakibaei M; Reichart B; Daebritz S; Hetzer R Ann Thorac Surg; 2006 Jun; 81(6):2207-16. PubMed ID: 16731156 [TBL] [Abstract][Full Text] [Related]
10. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. Schmidt D; Dijkman PE; Driessen-Mol A; Stenger R; Mariani C; Puolakka A; Rissanen M; Deichmann T; Odermatt B; Weber B; Emmert MY; Zund G; Baaijens FP; Hoerstrup SP J Am Coll Cardiol; 2010 Aug; 56(6):510-20. PubMed ID: 20670763 [TBL] [Abstract][Full Text] [Related]
11. Human or animal homograft: could they have a future as a biological scaffold for engineered heart valves? Dainese L; Biglioli P J Cardiovasc Surg (Torino); 2010 Jun; 51(3):449-56. PubMed ID: 20523298 [TBL] [Abstract][Full Text] [Related]
12. Approaches to heart valve tissue engineering scaffold design. Brody S; Pandit A J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):16-43. PubMed ID: 17318822 [TBL] [Abstract][Full Text] [Related]
13. Age-related structural changes in cardiac valves: implications for tissue-engineered repairs. Barzilla JE; Blevins TL; Grande-Allen KJ Am J Geriatr Cardiol; 2006; 15(5):311-5. PubMed ID: 16957451 [TBL] [Abstract][Full Text] [Related]
14. Bioengineering strategies for polymeric scaffold for tissue engineering an aortic heart valve: an update. Morsi YS Int J Artif Organs; 2014 Sep; 37(9):651-67. PubMed ID: 25262629 [TBL] [Abstract][Full Text] [Related]