These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19413600)

  • 1. ATP-sensitive potassium channels: a promising target for protecting neurovascular unit function in stroke.
    Sun XL; Hu G
    Clin Exp Pharmacol Physiol; 2010 Feb; 37(2):243-52. PubMed ID: 19413600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.
    Zhu HL; Luo WQ; Wang H
    Neuroscience; 2008 Dec; 157(4):884-94. PubMed ID: 18951957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics.
    Judge SI; Smith PJ
    Expert Opin Ther Pat; 2009 Apr; 19(4):433-60. PubMed ID: 19441925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release.
    Liu D; Lu C; Wan R; Auyeung WW; Mattson MP
    J Cereb Blood Flow Metab; 2002 Apr; 22(4):431-43. PubMed ID: 11919514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting ischemic stroke with a novel opener of ATP-sensitive potassium channels in the brain.
    Wang H; Zhang YL; Tang XC; Feng HS; Hu G
    Mol Pharmacol; 2004 Nov; 66(5):1160-8. PubMed ID: 15304552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling K(ATP) channel gating and its regulation.
    Proks P; Ashcroft FM
    Prog Biophys Mol Biol; 2009 Jan; 99(1):7-19. PubMed ID: 18983870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physiological properties and possible correction of adenosine triphosphate-sensitive potassium channel function].
    Chekman IS; Tarasova KV; Shevchuk VH
    Fiziol Zh (1994); 2008; 54(1):94-107. PubMed ID: 18416191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity.
    Huang L; Li B; Li W; Guo H; Zou F
    Carcinogenesis; 2009 May; 30(5):737-44. PubMed ID: 19176641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences.
    Flechtner I; de Lonlay P; Polak M
    Diabetes Metab; 2006 Dec; 32(6):569-80. PubMed ID: 17296510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iptakalim protects against ischemic injury by improving neurovascular unit function in the mouse brain.
    Ji J; Yan H; Chen ZZ; Zhao Z; Yang DD; Sun XL; Shi YP
    Clin Exp Pharmacol Physiol; 2015 Jul; 42(7):766-71. PubMed ID: 25998857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective role of neuronal KATP channels in brain hypoxia.
    Ballanyi K
    J Exp Biol; 2004 Aug; 207(Pt 18):3201-12. PubMed ID: 15299041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of potassium channels in critical illness.
    Lange M; Morelli A; Westphal M
    Curr Opin Anaesthesiol; 2008 Apr; 21(2):105-10. PubMed ID: 18443475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of potassium channels in coronary vasodilation.
    Dick GM; Tune JD
    Exp Biol Med (Maywood); 2010 Jan; 235(1):10-22. PubMed ID: 20404014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minoxidil prevents 3,4-methylenedioxymethamphetamine-induced serotonin depletions: role of mitochondrial ATP-sensitive potassium channels, Akt and ERK.
    Goñi-Allo B; Puerta E; Ramos M; Lasheras B; Jordán J; Aguirre N
    J Neurochem; 2008 Feb; 104(4):914-25. PubMed ID: 17995929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms by which K(ATP) channel openers produce acute and delayed cardioprotection.
    Wang Y; Haider HK; Ahmad N; Ashraf M
    Vascul Pharmacol; 2005; 42(5-6):253-64. PubMed ID: 15922258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting mitochondrial ATP-sensitive potassium channels--a novel approach to neuroprotection.
    Busija DW; Lacza Z; Rajapakse N; Shimizu K; Kis B; Bari F; Domoki F; Horiguchi T
    Brain Res Brain Res Rev; 2004 Nov; 46(3):282-94. PubMed ID: 15571770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protease-activated receptor 2 and bradykinin-mediated vasodilation in the cerebral arteries of stroke-prone rats.
    Smeda JS; McGuire JJ; Daneshtalab N
    Peptides; 2010 Feb; 31(2):227-37. PubMed ID: 19954757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics.
    Candelario-Jalil E
    Curr Opin Investig Drugs; 2009 Jul; 10(7):644-54. PubMed ID: 19579170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.