These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19413960)

  • 1. A computational framework for mechanical response of macromolecules: application to the salt concentration dependence of DNA bendability.
    Ma L; Yethiraj A; Chen X; Cui Q
    Biophys J; 2009 May; 96(9):3543-54. PubMed ID: 19413960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling salt-mediated electrostatics of macromolecules: the discrete surface charge optimization algorithm and its application to the nucleosome.
    Beard DA; Schlick T
    Biopolymers; 2001 Jan; 58(1):106-15. PubMed ID: 11072233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic effects in DNA stretching.
    Tkachenko AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041801. PubMed ID: 17155082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA overstretching transition: ionic strength effects.
    Punkkinen O; Hansen PL; Miao L; Vattulainen I
    Biophys J; 2005 Aug; 89(2):967-78. PubMed ID: 15923227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Looping charged elastic rods: applications to protein-induced DNA loop formation.
    Cherstvy AG
    Eur Biophys J; 2011 Jan; 40(1):69-80. PubMed ID: 20963409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical investigation of the Tanford-Kirkwood scheme by means of Monte Carlo simulations.
    Da Silva FL; Jönsson B; Penfold R
    Protein Sci; 2001 Jul; 10(7):1415-25. PubMed ID: 11420443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.
    Boschitsch AH; Fenley MO
    J Comput Chem; 2007 Apr; 28(5):909-21. PubMed ID: 17238171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics of double-stranded DNA in periodic systems with discrete salt.
    Mielke SP; Grønbech-Jensen N; Benham CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031924. PubMed ID: 18517439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of boundary conditions in DNA simulations: analysis of ion distributions with the finite-difference Poisson-Boltzmann method.
    Ye X; Cai Q; Yang W; Luo R
    Biophys J; 2009 Jul; 97(2):554-62. PubMed ID: 19619470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do monovalent mobile ions affect DNA's flexibility at high salt content?
    Savelyev A
    Phys Chem Chem Phys; 2012 Feb; 14(7):2250-4. PubMed ID: 22246071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P; Trylska J
    Biopolymers; 2008 Feb; 89(2):93-113. PubMed ID: 17969016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force.
    Manning GS
    Biophys J; 2006 Nov; 91(10):3607-16. PubMed ID: 16935960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of dissolved salts in thermophoresis of DNA: lattice-Boltzmann-based simulations.
    Hammack A; Chen YL; Pearce JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031915. PubMed ID: 21517533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme bendability of DNA double helix due to bending asymmetry.
    Salari H; Eslami-Mossallam B; Naderi S; Ejtehadi MR
    J Chem Phys; 2015 Sep; 143(10):104904. PubMed ID: 26374059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model.
    Shkel IA
    J Phys Chem B; 2010 Aug; 114(33):10793-803. PubMed ID: 20681741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-mediated nucleic acid helix-helix interactions.
    Tan ZJ; Chen SJ
    Biophys J; 2006 Jul; 91(2):518-36. PubMed ID: 16648172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo-based linear Poisson-Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible.
    Simonov NA; Mascagni M; Fenley MO
    J Chem Phys; 2007 Nov; 127(18):185105. PubMed ID: 18020668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic effects on overstretching transition of B-DNA.
    Fu H; Ghee Koh C; Chen H
    Eur Phys J E Soft Matter; 2005 Jun; 17(2):231-5. PubMed ID: 15920664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.