These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19413975)

  • 1. Fluorophore binding aptamers as a tool for RNA visualization.
    Eydeler K; Magbanua E; Werner A; Ziegelmüller P; Hahn U
    Biophys J; 2009 May; 96(9):3703-7. PubMed ID: 19413975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle X-ray scattering.
    Werner A; Konarev PV; Svergun DI; Hahn U
    Anal Biochem; 2009 Jun; 389(1):52-62. PubMed ID: 19303859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence correlation spectroscopy (FCS)-based characterisation of aptamer ligand interaction.
    Werner A; Hahn U
    Methods Mol Biol; 2009; 535():107-14. PubMed ID: 19377978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution.
    Filonov GS; Moon JD; Svensen N; Jaffrey SR
    J Am Chem Soc; 2014 Nov; 136(46):16299-308. PubMed ID: 25337688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking.
    Dolgosheina EV; Jeng SC; Panchapakesan SS; Cojocaru R; Chen PS; Wilson PD; Hawkins N; Wiggins PA; Unrau PJ
    ACS Chem Biol; 2014 Oct; 9(10):2412-20. PubMed ID: 25101481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers.
    Sunbul M; Arora A; Jäschke A
    Methods Mol Biol; 2018; 1649():289-304. PubMed ID: 29130205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA complex purification using high-affinity fluorescent RNA aptamer tags.
    Panchapakesan SS; Jeng SC; Unrau PJ
    Ann N Y Acad Sci; 2015 Apr; 1341():149-55. PubMed ID: 25585661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA mimics of green fluorescent protein.
    Paige JS; Wu KY; Jaffrey SR
    Science; 2011 Jul; 333(6042):642-6. PubMed ID: 21798953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time.
    Wang Z; Luo Y; Xie X; Hu X; Song H; Zhao Y; Shi J; Wang L; Glinsky G; Chen N; Lal R; Fan C
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):972-976. PubMed ID: 28991414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimally invasive determination of mRNA concentration in single living bacteria.
    Guet CC; Bruneaux L; Min TL; Siegal-Gaskins D; Figueroa I; Emonet T; Cluzel P
    Nucleic Acids Res; 2008 Jul; 36(12):e73. PubMed ID: 18515347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA visualization in live bacterial cells using fluorescent protein complementation.
    Valencia-Burton M; McCullough RM; Cantor CR; Broude NE
    Nat Methods; 2007 May; 4(5):421-7. PubMed ID: 17401371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging.
    Wirth R; Gao P; Nienhaus GU; Sunbul M; Jäschke A
    J Am Chem Soc; 2019 May; 141(18):7562-7571. PubMed ID: 30986047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Genetically Encoded Fluorescent Aptamers for Visualization of Mycobacterium tuberculosis Small RNA MTS1338 in Infected Macrophages.
    Bychenko OS; Skvortsova YV; Grigorov AS; Azhikina TL
    Dokl Biochem Biophys; 2020 Jul; 493(1):185-189. PubMed ID: 32894461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA aptamers that functionally interact with green fluorescent protein and its derivatives.
    Shui B; Ozer A; Zipfel W; Sahu N; Singh A; Lis JT; Shi H; Kotlikoff MI
    Nucleic Acids Res; 2012 Mar; 40(5):e39. PubMed ID: 22189104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer.
    Filonov GS; Song W; Jaffrey SR
    Biochemistry; 2019 Mar; 58(12):1560-1564. PubMed ID: 30838859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell.
    Oura M; Yamamoto J; Ishikawa H; Mikuni S; Fukushima R; Kinjo M
    Sci Rep; 2016 Aug; 6():31091. PubMed ID: 27489044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription.
    Furukawa K; Abe H; Abe N; Harada M; Tsuneda S; Ito Y
    Bioorg Med Chem Lett; 2008 Aug; 18(16):4562-5. PubMed ID: 18667307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of an RNA aptamer in complex with the fluorophore tetramethylrhodamine.
    Duchardt-Ferner E; Juen M; Bourgeois B; Madl T; Kreutz C; Ohlenschläger O; Wöhnert J
    Nucleic Acids Res; 2020 Jan; 48(2):949-961. PubMed ID: 31754719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping receptor density on live cells by using fluorescence correlation spectroscopy.
    Chen Y; Munteanu AC; Huang YF; Phillips J; Zhu Z; Mavros M; Tan W
    Chemistry; 2009; 15(21):5327-36. PubMed ID: 19360825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells.
    Zhang J; Fei J; Leslie BJ; Han KY; Kuhlman TE; Ha T
    Sci Rep; 2015 Nov; 5():17295. PubMed ID: 26612428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.