BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

847 related articles for article (PubMed ID: 19414067)

  • 1. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1).
    Litosch I; Pujari R; Lee SJ
    Cell Signal; 2009 Sep; 21(9):1379-84. PubMed ID: 19414067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidic acid potentiates G(alpha)q stimulation of phospholipase C-beta1 signaling.
    Litosch I
    Biochem Biophys Res Commun; 2009 Dec; 390(3):603-7. PubMed ID: 19818737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction.
    Heydorn A; Ward RJ; Jorgensen R; Rosenkilde MM; Frimurer TM; Milligan G; Kostenis E
    Mol Pharmacol; 2004 Aug; 66(2):250-9. PubMed ID: 15266015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor-coupling properties of the invertebrate visual guanine nucleotide binding protein iGqalpha.
    Go L; Mitchell J
    Cell Signal; 2007 Sep; 19(9):1919-27. PubMed ID: 17560078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galpha12/13- and rho-dependent activation of phospholipase C-epsilon by lysophosphatidic acid and thrombin receptors.
    Hains MD; Wing MR; Maddileti S; Siderovski DP; Harden TK
    Mol Pharmacol; 2006 Jun; 69(6):2068-75. PubMed ID: 16554409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phospholipase C-beta activity by phosphatidic acid: isoform dependence, role of protein kinase C, and G protein subunits.
    Litosch I
    Biochemistry; 2003 Feb; 42(6):1618-23. PubMed ID: 12578375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levels of G-protein alpha q/11 subunits and of phospholipase C-beta(1-4), -gamma, and -delta1 isoforms in postmortem human brain caudate and cortical membranes: potential functional implications.
    López de Jesús M; Zalduegui A; Ruiz de Azúa I; Callado LF; Meana JJ; Sallés J
    Neurochem Int; 2006 Jul; 49(1):72-9. PubMed ID: 16481068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity.
    Kostenis E; Martini L; Ellis J; Waldhoer M; Heydorn A; Rosenkilde MM; Norregaard PK; Jorgensen R; Whistler JL; Milligan G
    J Pharmacol Exp Ther; 2005 Apr; 313(1):78-87. PubMed ID: 15615862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LARG links histamine-H1-receptor-activated Gq to Rho-GTPase-dependent signaling pathways.
    Pfreimer M; Vatter P; Langer T; Wieland T; Gierschik P; Moepps B
    Cell Signal; 2012 Mar; 24(3):652-63. PubMed ID: 22100544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of RGS box proteins to evaluate G-protein selectivity in receptor-promoted signaling.
    Hains MD; Siderovski DP; Harden TK
    Methods Enzymol; 2004; 389():71-88. PubMed ID: 15313560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Caenorhabditis elegans G{alpha}q chimeras to detect G-protein-coupled receptor signals.
    Walker MW; Jones KA; Tamm J; Zhong H; Smith KE; Gerald C; Vaysse P; Branchek TA
    J Biomol Screen; 2005 Mar; 10(2):127-36. PubMed ID: 15799956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive serum response factor activation by the viral chemokine receptor homologue pUS28 is differentially regulated by Galpha(q/11) and Galpha(16).
    Moepps B; Tulone C; Kern C; Minisini R; Michels G; Vatter P; Wieland T; Gierschik P
    Cell Signal; 2008 Aug; 20(8):1528-37. PubMed ID: 18534820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phospholipase C-β(1) GTPase-activating protein (GAP) function and relationship to G(q) efficacy.
    Litosch I
    IUBMB Life; 2013 Nov; 65(11):936-40. PubMed ID: 24170560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants for phosphatidic acid regulation of phospholipase C-beta1.
    Ross EM; Mateu D; Gomes AV; Arana C; Tran T; Litosch I
    J Biol Chem; 2006 Nov; 281(44):33087-94. PubMed ID: 16950781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action of Pasteurella multocida toxin on Galpha(q) is persistent and independent of interaction with G-protein-coupled receptors.
    Orth JH; Lang S; Preuss I; Milligan G; Aktories K
    Cell Signal; 2007 Oct; 19(10):2174-82. PubMed ID: 17669624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mechanisms for feedback regulation of phospholipase C-beta activity.
    Litosch I
    IUBMB Life; 2002 Nov; 54(5):253-60. PubMed ID: 12587975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Ras-dependent signaling pathways by G(14) -coupled receptors requires the adaptor protein TPR1.
    Kwan DH; Yung LY; Ye RD; Wong YH
    J Cell Biochem; 2012 Nov; 113(11):3486-97. PubMed ID: 22711498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique fold of phospholipase C-beta mediates dimerization and interaction with G alpha q.
    Singer AU; Waldo GL; Harden TK; Sondek J
    Nat Struct Biol; 2002 Jan; 9(1):32-6. PubMed ID: 11753430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by cAMP-dependent protein kinease of a G-protein-mediated phospholipase C.
    Liu M; Simon MI
    Nature; 1996 Jul; 382(6586):83-7. PubMed ID: 8657310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.