BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 19414279)

  • 21. Proteomics in medical microbiology.
    Cash P
    Electrophoresis; 2000 Apr; 21(6):1187-201. PubMed ID: 10786891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria.
    Phale PS; Malhotra H; Shah BA
    Adv Appl Microbiol; 2020; 112():1-65. PubMed ID: 32762865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic analysis of Brucella suis under oxygen deficiency reveals flexibility in adaptive expression of various pathways.
    Al Dahouk S; Loisel-Meyer S; Scholz HC; Tomaso H; Kersten M; Harder A; Neubauer H; Köhler S; Jubier-Maurin V
    Proteomics; 2009 Jun; 9(11):3011-21. PubMed ID: 19526545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation potential of the genus Rhodococcus.
    Martínková L; Uhnáková B; Pátek M; Nesvera J; Kren V
    Environ Int; 2009 Jan; 35(1):162-77. PubMed ID: 18789530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydroxyquinol pathway for microbial degradation of halogenated aromatic compounds.
    Travkin VM; Solyanikova IP; Golovleva LA
    J Environ Sci Health B; 2006; 41(8):1361-82. PubMed ID: 17090498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase.
    Qi SW; Chaudhry MT; Zhang Y; Meng B; Huang Y; Zhao KX; Poetsch A; Jiang CY; Liu S; Liu SJ
    Proteomics; 2007 Oct; 7(20):3775-87. PubMed ID: 17880007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila.
    Markert S; Arndt C; Felbeck H; Becher D; Sievert SM; Hügler M; Albrecht D; Robidart J; Bench S; Feldman RA; Hecker M; Schweder T
    Science; 2007 Jan; 315(5809):247-50. PubMed ID: 17218528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Where there's muck there's microbes.
    Seth-Smith H; Bentley S
    Nat Rev Microbiol; 2006 Sep; 4(9):646-7. PubMed ID: 16913069
    [No Abstract]   [Full Text] [Related]  

  • 29. [Progress in microbial proteomics].
    Wu M; Peng X
    Wei Sheng Wu Xue Bao; 2002 Apr; 42(2):251-4. PubMed ID: 12557406
    [No Abstract]   [Full Text] [Related]  

  • 30. Proteomics of marine bacteria.
    Schweder T; Markert S; Hecker M
    Electrophoresis; 2008 Jun; 29(12):2603-16. PubMed ID: 18494036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.
    Pérez-Pantoja D; De la Iglesia R; Pieper DH; González B
    FEMS Microbiol Rev; 2008 Aug; 32(5):736-94. PubMed ID: 18691224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developing antibacterial vaccines in genomics and proteomics era.
    Kaushik DK; Sehgal D
    Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic approaches to bacterial differentiation.
    Norbeck AD; Callister SJ; Monroe ME; Jaitly N; Elias DA; Lipton MS; Smith RD
    J Microbiol Methods; 2006 Dec; 67(3):473-86. PubMed ID: 16919344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic analysis of the insoluble subproteome of Clostridium difficile strain 630.
    Jain S; Graham RL; McMullan G; Ternan NG
    FEMS Microbiol Lett; 2010 Nov; 312(2):151-9. PubMed ID: 20868380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial membrane proteomics.
    Poetsch A; Wolters D
    Proteomics; 2008 Oct; 8(19):4100-22. PubMed ID: 18780352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism.
    Kamimura N; Takahashi K; Mori K; Araki T; Fujita M; Higuchi Y; Masai E
    Environ Microbiol Rep; 2017 Dec; 9(6):679-705. PubMed ID: 29052962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons.
    Kotoky R; Ogawa N; Pandey P
    Microbiol Res; 2022 Sep; 262():127087. PubMed ID: 35717889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial metabolism under FHA control.
    Bellinzoni M; Alzari PM
    Structure; 2009 Apr; 17(4):487-8. PubMed ID: 19368881
    [No Abstract]   [Full Text] [Related]  

  • 39. Microbiology. A proteomic snapshot of life at a vent.
    Fisher CR; Girguis P
    Science; 2007 Jan; 315(5809):198-9. PubMed ID: 17218516
    [No Abstract]   [Full Text] [Related]  

  • 40. Functional proteomics within the genus Lactobacillus.
    De Angelis M; Calasso M; Cavallo N; Di Cagno R; Gobbetti M
    Proteomics; 2016 Mar; 16(6):946-62. PubMed ID: 27001126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.