These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19415262)

  • 1. Identifying the structure of the active sites of human recombinant prolidase.
    Besio R; Alleva S; Forlino A; Lupi A; Meneghini C; Minicozzi V; Profumo A; Stellato F; Tenni R; Morante S
    Eur Biophys J; 2010 May; 39(6):935-45. PubMed ID: 19415262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for prolidase deficiency disease mechanisms.
    Wilk P; Uehlein M; Piwowarczyk R; Dobbek H; Mueller U; Weiss MS
    FEBS J; 2018 Sep; 285(18):3422-3441. PubMed ID: 30066404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can human prolidase enzyme use different metals for full catalytic activity?
    Alberto ME; Leopoldini M; Russo N
    Inorg Chem; 2011 Apr; 50(8):3394-403. PubMed ID: 21425789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mn(II)-Mn(II) center in human prolidase.
    Besio R; Baratto MC; Gioia R; Monzani E; Nicolis S; Cucca L; Profumo A; Casella L; Basosi R; Tenni R; Rossi A; Forlino A
    Biochim Biophys Acta; 2013 Jan; 1834(1):197-204. PubMed ID: 22999980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity and reaction mechanism of human prolidase.
    Wilk P; Uehlein M; Kalms J; Dobbek H; Mueller U; Weiss MS
    FEBS J; 2017 Sep; 284(17):2870-2885. PubMed ID: 28677335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human recombinant prolidase from eukaryotic and prokaryotic sources. Expression, purification, characterization and long-term stability studies.
    Lupi A; Della Torre S; Campari E; Tenni R; Cetta G; Rossi A; Forlino A
    FEBS J; 2006 Dec; 273(23):5466-78. PubMed ID: 17081196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural evidences on human prolidase pathological mutants suggest strategies for enzyme functional rescue.
    Besio R; Gioia R; Cossu F; Monzani E; Nicolis S; Cucca L; Profumo A; Casella L; Tenni R; Bolognesi M; Rossi A; Forlino A
    PLoS One; 2013; 8(3):e58792. PubMed ID: 23516557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic structure of recombinant Lactococcus lactis prolidase to support proposed structure-function relationships.
    Kgosisejo O; Chen JA; Grochulski P; Tanaka T
    Biochim Biophys Acta Proteins Proteom; 2017 May; 1865(5):473-480. PubMed ID: 28179139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the prolidase from Pyrococcus furiosus.
    Maher MJ; Ghosh M; Grunden AM; Menon AL; Adams MW; Freeman HC; Guss JM
    Biochemistry; 2004 Mar; 43(10):2771-83. PubMed ID: 15005612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Case Of 13-Year-Old Girl With Prolidase Deficiency.
    Khushdil A; Murtaza F
    J Ayub Med Coll Abbottabad; 2017; 29(2):355-357. PubMed ID: 28718266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations.
    Lupi A; Tenni R; Rossi A; Cetta G; Forlino A
    Amino Acids; 2008 Nov; 35(4):739-52. PubMed ID: 18340504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of recombinant prolidase from Lactococcus lactis- changes in substrate specificity by metal cations, and allosteric behavior of the peptidase.
    Yang SI; Tanaka T
    FEBS J; 2008 Jan; 275(2):271-80. PubMed ID: 18070105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase.
    Vyas NK; Nickitenko A; Rastogi VK; Shah SS; Quiocho FA
    Biochemistry; 2010 Jan; 49(3):547-59. PubMed ID: 20000741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies.
    Gogoi P; Chandravanshi M; Mandal SK; Srivastava A; Kanaujia SP
    J Biomol Struct Dyn; 2016 Jul; 34(7):1470-85. PubMed ID: 26248730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta.
    Benning MM; Shim H; Raushel FM; Holden HM
    Biochemistry; 2001 Mar; 40(9):2712-22. PubMed ID: 11258882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for substrate recognition and hydrolysis by mouse carnosinase CN2.
    Unno H; Yamashita T; Ujita S; Okumura N; Otani H; Okumura A; Nagai K; Kusunoki M
    J Biol Chem; 2008 Oct; 283(40):27289-99. PubMed ID: 18550540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of prolidase causes a bone phenotype both in human and in mouse.
    Besio R; Maruelli S; Gioia R; Villa I; Grabowski P; Gallagher O; Bishop NJ; Foster S; De Lorenzi E; Colombo R; Diaz JL; Moore-Barton H; Deshpande C; Aydin HI; Tokatli A; Kwiek B; Kasapkara CS; Adisen EO; Gurer MA; Di Rocco M; Phang JM; Gunn TM; Tenni R; Rossi A; Forlino A
    Bone; 2015 Mar; 72():53-64. PubMed ID: 25460580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion.
    Fabrichniy IP; Lehtiƶ L; Salminen A; Zyryanov AB; Baykov AA; Lahti R; Goldman A
    Biochemistry; 2004 Nov; 43(45):14403-11. PubMed ID: 15533045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.