These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
585 related articles for article (PubMed ID: 19415485)
1. MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Fessler SP; Wotkowicz MT; Mahanta SK; Bamdad C Breast Cancer Res Treat; 2009 Nov; 118(1):113-24. PubMed ID: 19415485 [TBL] [Abstract][Full Text] [Related]
2. EGFR over-expression and activation in high HER2, ER negative breast cancer cell line induces trastuzumab resistance. Dua R; Zhang J; Nhonthachit P; Penuel E; Petropoulos C; Parry G Breast Cancer Res Treat; 2010 Aug; 122(3):685-97. PubMed ID: 19859802 [TBL] [Abstract][Full Text] [Related]
3. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells. Vazquez-Martin A; Colomer R; Brunet J; Menendez JA Int J Oncol; 2007 Oct; 31(4):769-76. PubMed ID: 17786307 [TBL] [Abstract][Full Text] [Related]
4. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Osipo C; Patel P; Rizzo P; Clementz AG; Hao L; Golde TE; Miele L Oncogene; 2008 Aug; 27(37):5019-32. PubMed ID: 18469855 [TBL] [Abstract][Full Text] [Related]
5. Evolving strategies for overcoming resistance to HER2-directed therapy: targeting the PI3K/Akt/mTOR pathway. Nahta R; O'Regan RM Clin Breast Cancer; 2010 Nov; 10 Suppl 3():S72-8. PubMed ID: 21115425 [TBL] [Abstract][Full Text] [Related]
6. Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells. Zhang C; Duan X; Xu L; Ye J; Zhao J; Liu Y Breast Cancer Res Treat; 2012 Dec; 136(3):739-48. PubMed ID: 23117856 [TBL] [Abstract][Full Text] [Related]
7. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Valabrega G; Capellero S; Cavalloni G; Zaccarello G; Petrelli A; Migliardi G; Milani A; Peraldo-Neia C; Gammaitoni L; Sapino A; Pecchioni C; Moggio A; Giordano S; Aglietta M; Montemurro F Breast Cancer Res Treat; 2011 Nov; 130(1):29-40. PubMed ID: 21153051 [TBL] [Abstract][Full Text] [Related]
8. Development and characterization of a preclinical ovarian carcinoma model to investigate the mechanism of acquired resistance to trastuzumab. Luistro LL; Rosinski JA; Bian H; Bishayee S; Rameshwar P; Ponzio NM; Ritland SR Int J Oncol; 2012 Aug; 41(2):639-51. PubMed ID: 22580986 [TBL] [Abstract][Full Text] [Related]
9. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nahta R; Yu D; Hung MC; Hortobagyi GN; Esteva FJ Nat Clin Pract Oncol; 2006 May; 3(5):269-80. PubMed ID: 16683005 [TBL] [Abstract][Full Text] [Related]
11. Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. du Manoir JM; Francia G; Man S; Mossoba M; Medin JA; Viloria-Petit A; Hicklin DJ; Emmenegger U; Kerbel RS Clin Cancer Res; 2006 Feb; 12(3 Pt 1):904-16. PubMed ID: 16467105 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Pegram M; Hsu S; Lewis G; Pietras R; Beryt M; Sliwkowski M; Coombs D; Baly D; Kabbinavar F; Slamon D Oncogene; 1999 Apr; 18(13):2241-51. PubMed ID: 10327070 [TBL] [Abstract][Full Text] [Related]
13. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Goldenberg MM Clin Ther; 1999 Feb; 21(2):309-18. PubMed ID: 10211534 [TBL] [Abstract][Full Text] [Related]
14. Targeting fatty acid synthase-driven lipid rafts: a novel strategy to overcome trastuzumab resistance in breast cancer cells. Menendez JA; Vellon L; Lupu R Med Hypotheses; 2005; 64(5):997-1001. PubMed ID: 15780499 [TBL] [Abstract][Full Text] [Related]
15. Lipid-conjugated telomerase template antagonists sensitize resistant HER2-positive breast cancer cells to trastuzumab. Goldblatt EM; Erickson PA; Gentry ER; Gryaznov SM; Herbert BS Breast Cancer Res Treat; 2009 Nov; 118(1):21-32. PubMed ID: 18853252 [TBL] [Abstract][Full Text] [Related]
16. Trastuzumab in combination with heregulin-activated Her-2 (erbB-2) triggers a receptor-enhanced chemosensitivity effect in the absence of Her-2 overexpression. Menendez JA; Mehmi I; Lupu R J Clin Oncol; 2006 Aug; 24(23):3735-46. PubMed ID: 16847284 [TBL] [Abstract][Full Text] [Related]
18. [Human recombinant anti-HER2 monoclonal antibody--a new targeted treatment in breast cancer]. Dank M Orv Hetil; 2001 Nov; 142(46):2563-8. PubMed ID: 11770175 [TBL] [Abstract][Full Text] [Related]
19. Trastuzumab-induced HER reprogramming in "resistant" breast carcinoma cells. Narayan M; Wilken JA; Harris LN; Baron AT; Kimbler KD; Maihle NJ Cancer Res; 2009 Mar; 69(6):2191-4. PubMed ID: 19276389 [TBL] [Abstract][Full Text] [Related]
20. The expression of activated Y-box binding protein-1 serine 102 mediates trastuzumab resistance in breast cancer cells by increasing CD44+ cells. Dhillon J; Astanehe A; Lee C; Fotovati A; Hu K; Dunn SE Oncogene; 2010 Nov; 29(47):6294-300. PubMed ID: 20802512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]