BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19415796)

  • 1. Dual localization of fumarase is dependent on the integrity of the glyoxylate shunt.
    Regev-Rudzki N; Battat E; Goldberg I; Pines O
    Mol Microbiol; 2009 Apr; 72(2):297-306. PubMed ID: 19415796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putting a break on protein translocation: metabolic regulation of mitochondrial protein import.
    Herrmann JM
    Mol Microbiol; 2009 Apr; 72(2):275-8. PubMed ID: 19415790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolving dual targeting of a prokaryotic protein in yeast.
    Burak E; Yogev O; Sheffer S; Schueler-Furman O; Pines O
    Mol Biol Evol; 2013 Jul; 30(7):1563-73. PubMed ID: 23462316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization.
    Regev-Rudzki N; Yogev O; Pines O
    J Cell Sci; 2008 Jul; 121(Pt 14):2423-31. PubMed ID: 18577574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of fumarase during mitochondrial import determines its dual targeting in yeast.
    Sass E; Karniely S; Pines O
    J Biol Chem; 2003 Nov; 278(46):45109-16. PubMed ID: 12960177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini.
    Sass E; Blachinsky E; Karniely S; Pines O
    J Biol Chem; 2001 Dec; 276(49):46111-7. PubMed ID: 11585823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae.
    Stein I; Peleg Y; Even-Ram S; Pines O
    Mol Cell Biol; 1994 Jul; 14(7):4770-8. PubMed ID: 8007976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The presequence of fumarase is exposed to the cytosol during import into mitochondria.
    Karniely S; Regev-Rudzki N; Pines O
    J Mol Biol; 2006 Apr; 358(2):396-405. PubMed ID: 16530220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Import into mitochondria, folding and retrograde movement of fumarase in yeast.
    Knox C; Sass E; Neupert W; Pines O
    J Biol Chem; 1998 Oct; 273(40):25587-93. PubMed ID: 9748223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial import of human and yeast fumarase in live mammalian cells: retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence.
    Singh B; Gupta RS
    Biochem Biophys Res Commun; 2006 Aug; 346(3):911-8. PubMed ID: 16774737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of excess succinate and retrograde control of metabolite accumulation in yeast tricarboxylic cycle mutants.
    Lin AP; Anderson SL; Minard KI; McAlister-Henn L
    J Biol Chem; 2011 Sep; 286(39):33737-46. PubMed ID: 21841001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response.
    Yogev O; Yogev O; Singer E; Shaulian E; Goldberg M; Fox TD; Pines O
    PLoS Biol; 2010 Mar; 8(3):e1000328. PubMed ID: 20231875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fumarase: a paradigm of dual targeting and dual localized functions.
    Yogev O; Naamati A; Pines O
    FEBS J; 2011 Nov; 278(22):4230-42. PubMed ID: 21929734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation-coupled translocation of yeast fumarase into mitochondria in vivo.
    Yogev O; Karniely S; Pines O
    J Biol Chem; 2007 Oct; 282(40):29222-9. PubMed ID: 17666392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and properties of the mitochondrial and cytosolic forms of fumarase in sunflower cotyledons.
    Eprintsev AT; Fedorin DN; Sazonova OV; Igamberdiev AU
    Plant Physiol Biochem; 2018 Aug; 129():305-309. PubMed ID: 29920456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-complementation as a probe for dual localization of mitochondrial proteins.
    Karniely S; Rayzner A; Sass E; Pines O
    Exp Cell Res; 2006 Nov; 312(19):3835-46. PubMed ID: 17034789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aconitase C-terminal domain is an independent dual targeting element.
    Ben-Menachem R; Regev-Rudzki N; Pines O
    J Mol Biol; 2011 Jun; 409(2):113-23. PubMed ID: 21440554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2.
    Leshets M; Ramamurthy D; Lisby M; Lehming N; Pines O
    Curr Genet; 2018 Jun; 64(3):697-712. PubMed ID: 29204698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
    Peleg Y; Rokem JS; Goldberg I; Pines O
    Appl Environ Microbiol; 1990 Sep; 56(9):2777-83. PubMed ID: 2275532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and properties of the mitochondrial and cytosolic forms of fumarase in germinating maize seeds.
    Eprintsev AT; Fedorin DN; Starinina EV; Igamberdiev AU
    Physiol Plant; 2014 Oct; 152(2):231-40. PubMed ID: 24611547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.