BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19415908)

  • 1. Comparative assessment of large-scale proteomic studies of apoptotic proteolysis.
    Simon GM; Dix MM; Cravatt BF
    ACS Chem Biol; 2009 Jun; 4(6):401-8. PubMed ID: 19415908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini.
    Wiita AP; Seaman JE; Wells JA
    Methods Enzymol; 2014; 544():327-58. PubMed ID: 24974296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DegraBase: a database of proteolysis in healthy and apoptotic human cells.
    Crawford ED; Seaman JE; Agard N; Hsu GW; Julien O; Mahrus S; Nguyen H; Shimbo K; Yoshihara HA; Zhuang M; Chalkley RJ; Wells JA
    Mol Cell Proteomics; 2013 Mar; 12(3):813-24. PubMed ID: 23264352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-Terminal Modification of Proteins with Subtiligase Specificity Variants.
    Weeks AM; Wells JA
    Curr Protoc Chem Biol; 2020 Mar; 12(1):e79. PubMed ID: 32074409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping proteolytic neo-N termini at the surface of living cells.
    Weeks AM; Byrnes JR; Lui I; Wells JA
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33536314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtiligase-Catalyzed Peptide Ligation.
    Weeks AM; Wells JA
    Chem Rev; 2020 Mar; 120(6):3127-3160. PubMed ID: 31663725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global mapping of the topography and magnitude of proteolytic events in apoptosis.
    Dix MM; Simon GM; Cravatt BF
    Cell; 2008 Aug; 134(4):679-91. PubMed ID: 18724940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping Cell Surface Proteolysis with Plasma Membrane-Targeted Subtiligase.
    Amiridis AA; Weeks AM
    Methods Mol Biol; 2022; 2456():71-83. PubMed ID: 35612736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of benzyl mercaptan for direct preparation of long polypeptide benzylthio esters as substrates of subtiligase.
    Welker E; Scheraga HA
    Biochem Biophys Res Commun; 1999 Jan; 254(1):147-51. PubMed ID: 9920748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially Resolved Tagging of Proteolytic Neo-N termini with Subtiligase-TM.
    Weeks AM
    J Membr Biol; 2021 Apr; 254(2):119-125. PubMed ID: 33599828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary proteomic tools for the dissection of apoptotic proteolysis events.
    Pham VC; Pitti R; Anania VG; Bakalarski CE; Bustos D; Jhunjhunwala S; Phung QT; Yu K; Forrest WF; Kirkpatrick DS; Ashkenazi A; Lill JR
    J Proteome Res; 2012 May; 11(5):2947-54. PubMed ID: 22432722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering peptide ligase specificity by proteomic identification of ligation sites.
    Weeks AM; Wells JA
    Nat Chem Biol; 2018 Jan; 14(1):50-57. PubMed ID: 29155430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pep2Graph: A standalone tool to analyse proteolytic cleavages by proteases from gel-based mass spectrometry data.
    Gummadi S; Kang T; Fonseka P; Chitti SV; Ang CS; Mathivanan S
    Proteomics; 2022 Nov; 22(22):e2200147. PubMed ID: 35924633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tags for labeling protein N-termini with subtiligase for proteomics.
    Yoshihara HA; Mahrus S; Wells JA
    Bioorg Med Chem Lett; 2008 Nov; 18(22):6000-3. PubMed ID: 18762420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma.
    Taoka M; Morofuji N; Yamauchi Y; Ojima H; Kubota D; Terukina G; Nobe Y; Nakayama H; Takahashi N; Kosuge T; Isobe T; Kondo T
    J Proteome Res; 2014 Nov; 13(11):4847-58. PubMed ID: 24967658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale.
    Kaur U; Meng H; Lui F; Ma R; Ogburn RN; Johnson JHR; Fitzgerald MC; Jones LM
    J Proteome Res; 2018 Nov; 17(11):3614-3627. PubMed ID: 30222357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of shotgun proteomic data: the protein inference problem.
    Nesvizhskii AI; Aebersold R
    Mol Cell Proteomics; 2005 Oct; 4(10):1419-40. PubMed ID: 16009968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining Protease Substrates Within a Complex Protein Background Using the PROtein TOpography and Migration Analysis Platform (PROTOMAP).
    Fuhrman-Luck RA; Silva LM; Hastie ML; Gorman JJ; Clements JA
    Methods Mol Biol; 2017; 1574():145-170. PubMed ID: 28315249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProC-TEL: Profiling of Protein C-Termini by Enzymatic Labeling.
    Duan W; Xu G
    Methods Mol Biol; 2017; 1574():135-144. PubMed ID: 28315248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MS-driven protease substrate degradomics.
    Impens F; Colaert N; Helsens K; Plasman K; Van Damme P; Vandekerckhove J; Gevaert K
    Proteomics; 2010 Mar; 10(6):1284-96. PubMed ID: 20058249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.