These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 19416057)

  • 1. Redox-dependent mechanisms in coronary collateral growth: the "redox window" hypothesis.
    Yun J; Rocic P; Pung YF; Belmadani S; Carrao AC; Ohanyan V; Chilian WM
    Antioxid Redox Signal; 2009 Aug; 11(8):1961-74. PubMed ID: 19416057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal reactive oxygen species concentration and p38 MAP kinase are required for coronary collateral growth.
    Rocic P; Kolz C; Reed R; Potter B; Chilian WM
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2729-36. PubMed ID: 17308014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway.
    Hu C; Dandapat A; Mehta JL
    Hypertension; 2007 Nov; 50(5):952-7. PubMed ID: 17893372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanistic basis for the disparate effects of angiotensin II on coronary collateral growth.
    Reed R; Kolz C; Potter B; Rocic P
    Arterioscler Thromb Vasc Biol; 2008 Jan; 28(1):61-7. PubMed ID: 17962624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome.
    Reed R; Potter B; Smith E; Jadhav R; Villalta P; Jo H; Rocic P
    Am J Physiol Heart Circ Physiol; 2009 Jun; 296(6):H1811-21. PubMed ID: 19376806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation.
    Touyz RM; Cruzado M; Tabet F; Yao G; Salomon S; Schiffrin EL
    Can J Physiol Pharmacol; 2003 Feb; 81(2):159-67. PubMed ID: 12710530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corruption of coronary collateral growth in metabolic syndrome: Role of oxidative stress.
    Pung YF; Chilian WM
    World J Cardiol; 2010 Dec; 2(12):421-7. PubMed ID: 21191543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-dependent coronary metabolic dilation.
    Saitoh S; Kiyooka T; Rocic P; Rogers PA; Zhang C; Swafford A; Dick GM; Viswanathan C; Park Y; Chilian WM
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3720-5. PubMed ID: 17965288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species drives myocardial angiogenesis?
    Maulik N
    Antioxid Redox Signal; 2006; 8(11-12):2161-8. PubMed ID: 17034358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Regulation of Cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) Controls p38-MAPK (Mitogen-Activated Protein Kinase) and Orchestrates Cardiac Remodeling to Hypertension.
    Meijles DN; Cull JJ; Markou T; Cooper STE; Haines ZHR; Fuller SJ; O'Gara P; Sheppard MN; Harding SE; Sugden PH; Clerk A
    Hypertension; 2020 Oct; 76(4):1208-1218. PubMed ID: 32903101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis.
    Allahwala UK; Khachigian LM; Nour D; Ridiandres A; Billah M; Ward M; Weaver J; Bhindi R
    Microvasc Res; 2020 Nov; 132():104058. PubMed ID: 32798552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red wine polyphenols induce EDHF-mediated relaxations in porcine coronary arteries through the redox-sensitive activation of the PI3-kinase/Akt pathway.
    Ndiaye M; Chataigneau T; Chataigneau M; Schini-Kerth VB
    Br J Pharmacol; 2004 Aug; 142(7):1131-6. PubMed ID: 15249422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology.
    Griendling KK; Sorescu D; Lassègue B; Ushio-Fukai M
    Arterioscler Thromb Vasc Biol; 2000 Oct; 20(10):2175-83. PubMed ID: 11031201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB.
    El Bekay R; Alvarez M; Monteseirín J; Alba G; Chacón P; Vega A; Martin-Nieto J; Jiménez J; Pintado E; Bedoya FJ; Sobrino F
    Blood; 2003 Jul; 102(2):662-71. PubMed ID: 12663441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR.
    Tabet F; Schiffrin EL; Callera GE; He Y; Yao G; Ostman A; Kappert K; Tonks NK; Touyz RM
    Circ Res; 2008 Jul; 103(2):149-58. PubMed ID: 18566342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant effect of adrenomedullin on angiotensin II-induced reactive oxygen species generation in vascular smooth muscle cells.
    Yoshimoto T; Fukai N; Sato R; Sugiyama T; Ozawa N; Shichiri M; Hirata Y
    Endocrinology; 2004 Jul; 145(7):3331-7. PubMed ID: 15070851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species are critical mediators of coronary collateral development in a canine model.
    Gu W; Weihrauch D; Tanaka K; Tessmer JP; Pagel PS; Kersten JR; Chilian WM; Warltier DC
    Am J Physiol Heart Circ Physiol; 2003 Oct; 285(4):H1582-9. PubMed ID: 12816750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms.
    Singh L; Randhawa PK; Singh N; Jaggi AS
    Eur J Pharmacol; 2017 Aug; 809():151-155. PubMed ID: 28526338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion.
    Chiarugi P; Pani G; Giannoni E; Taddei L; Colavitti R; Raugei G; Symons M; Borrello S; Galeotti T; Ramponi G
    J Cell Biol; 2003 Jun; 161(5):933-44. PubMed ID: 12796479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.