BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19416166)

  • 1. The "hot wires" of the relaxin-like factor (Insl3).
    Schwabe C; Büllesbach EE
    Ann N Y Acad Sci; 2009 Apr; 1160():93-8. PubMed ID: 19416166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the transmembrane signal initiation site of the relaxin-like factor (RLF/INSL3).
    Büllesbach EE; Schwabe C
    Biochemistry; 2007 Aug; 46(34):9722-7. PubMed ID: 17676766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic cross-links arrest the C-terminal region of the relaxin-like factor in an active conformation.
    Büllesbach EE; Schwabe C
    Biochemistry; 2004 Jun; 43(25):8021-8. PubMed ID: 15209497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical synthesis and biological activity of rat INSL3.
    Smith KJ; Wade JD; Claasz AA; Otvos L; Temelcos C; Kubota Y; Hutson JM; Tregear GW; Bathgate RA
    J Pept Sci; 2001 Sep; 7(9):495-501. PubMed ID: 11587188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2.
    Zhang S; Hughes RA; Bathgate RA; Shabanpoor F; Hossain MA; Lin F; van Lierop B; Robinson AJ; Wade JD
    Peptides; 2010 Sep; 31(9):1730-6. PubMed ID: 20570702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan B27 in the relaxin-like factor (RLF) is crucial for RLF receptor-binding.
    Büllesbach EE; Schwabe C
    Biochemistry; 1999 Mar; 38(10):3073-8. PubMed ID: 10074360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mode of interaction of the relaxin-like factor (RLF) with the leucine-rich repeat G protein-activated receptor 8.
    Büllesbach EE; Schwabe C
    J Biol Chem; 2006 Sep; 281(36):26136-43. PubMed ID: 16844694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis and pharmacological evaluation of cyclic mimetics of the insulin-like peptide 3 (INSL3) B-chain.
    Shabanpoor F; Bathgate RA; Hossain MA; Giannakis E; Wade JD; Hughes RA
    J Pept Sci; 2007 Feb; 13(2):113-20. PubMed ID: 17120268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and development of analogues of dimers of insulin-like peptide 3 B-chain as high-affinity antagonists of the RXFP2 receptor.
    Shabanpoor F; Zhang S; Hughes RA; Hossain MA; Layfield S; Ferraro T; Bathgate RA; Separovic F; Wade JD
    Biopolymers; 2011; 96(1):81-7. PubMed ID: 20560146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LGR8 signal activation by the relaxin-like factor.
    Büllesbach EE; Schwabe C
    J Biol Chem; 2005 Apr; 280(15):14586-90. PubMed ID: 15708846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of human insulin-like peptide 5 and characterization of conserved hydrogen bonds and electrostatic interactions within the relaxin framework.
    Haugaard-Jönsson LM; Hossain MA; Daly NL; Craik DJ; Wade JD; Rosengren KJ
    Biochem J; 2009 May; 419(3):619-27. PubMed ID: 19178384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic human insulin 4 does not activate the G-protein-coupled receptors LGR7 or LGR8.
    Lin F; Otvos L; Kumagai J; Tregear GW; Bathgate RA; Wade JD
    J Pept Sci; 2004 May; 10(5):257-64. PubMed ID: 15160837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of disulfides by amide bonds in the relaxin-like factor (RLF/INSL3) reveals a role for the A11-B10 link in transmembrane signaling.
    Büllesbach EE; Schwabe C
    Biochemistry; 2012 May; 51(20):4198-205. PubMed ID: 22574850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant expression of an insulin-like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3.
    Luo X; Bathgate RA; Liu YL; Shao XX; Wade JD; Guo ZY
    FEBS J; 2009 Sep; 276(18):5203-11. PubMed ID: 19674100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase synthesis of europium-labeled human INSL3 as a novel probe for the study of ligand-receptor interactions.
    Shabanpoor F; Hughes RA; Bathgate RA; Zhang S; Scanlon DB; Lin F; Hossain MA; Separovic F; Wade JD
    Bioconjug Chem; 2008 Jul; 19(7):1456-63. PubMed ID: 18529069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial cDNA sequence of a relaxin-like factor (RLF) receptor, LGR8 and possible existence of the RLF ligand-receptor system in goat testes.
    Siqin ; Nakai M; Hagi T; Kato S; Pitia AM; Kotani M; Odanaka Y; Sugawara Y; Hamano K; Yogo K; Nagura Y; Fujita M; Sasada H; Sato E; Kohsaka T
    Anim Sci J; 2010 Dec; 81(6):681-6. PubMed ID: 21108688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of relaxin properties into other hormones of insulin-like structure.
    Büllesbach EE; Schwabe C
    SAAS Bull Biochem Biotechnol; 1996; 9():63-8. PubMed ID: 8652134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformationally constrained single-chain peptide mimics of relaxin B-chain secondary structure.
    Del Borgo MP; Hughes RA; Wade JD
    J Pept Sci; 2005 Sep; 11(9):564-71. PubMed ID: 15742332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the receptor, the ligand, and the cell in the signal transduction pathways utilized by the relaxin family peptide receptors 1-3.
    Summers RJ; Bathgate RA; Wade JD; van der Westhuizen ET; Halls ML
    Ann N Y Acad Sci; 2009 Apr; 1160():99-104. PubMed ID: 19416167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the LGR8 residues involved in binding insulin-like peptide 3.
    Scott DJ; Wilkinson TN; Zhang S; Ferraro T; Wade JD; Tregear GW; Bathgate RA
    Mol Endocrinol; 2007 Jul; 21(7):1699-712. PubMed ID: 17473281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.