These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19416877)
1. Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues. Léonard J; Portuondo-Campa E; Cannizzo A; van Mourik F; van der Zwan G; Tittor J; Haacke S; Chergui M Proc Natl Acad Sci U S A; 2009 May; 106(19):7718-23. PubMed ID: 19416877 [TBL] [Abstract][Full Text] [Related]
2. Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption. Schenkl S; van Mourik F; Friedman N; Sheves M; Schlesinger R; Haacke S; Chergui M Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4101-6. PubMed ID: 16537491 [TBL] [Abstract][Full Text] [Related]
3. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Schenkl S; van Mourik F; van der Zwan G; Haacke S; Chergui M Science; 2005 Aug; 309(5736):917-20. PubMed ID: 16081732 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of primary events in the photocycle of excited bacteriorhodopsin. Lu JJ; Ming M; Yang Y; Wu J; Li B; Ding JD; Li QG; Qian SX Acta Biochim Biophys Sin (Shanghai); 2004 Nov; 36(11):724-8. PubMed ID: 15514845 [TBL] [Abstract][Full Text] [Related]
5. Ultrafast terahertz Stark spectroscopy reveals the excited-state dipole moments of retinal in bacteriorhodopsin. Zhang J; Singh P; Engel D; Fingerhut BP; Broser M; Hegemann P; Elsaesser T Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2319676121. PubMed ID: 38900801 [TBL] [Abstract][Full Text] [Related]
8. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal. Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662 [TBL] [Abstract][Full Text] [Related]
9. Protein Dynamics Preceding Photoisomerization of the Retinal Chromophore in Bacteriorhodopsin Revealed by Deep-UV Femtosecond Stimulated Raman Spectroscopy. Tahara S; Kuramochi H; Takeuchi S; Tahara T J Phys Chem Lett; 2019 Sep; 10(18):5422-5427. PubMed ID: 31469573 [TBL] [Abstract][Full Text] [Related]
10. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band. Kalisky O; Feitelson J; Ottolenghi M Biochemistry; 1981 Jan; 20(1):205-9. PubMed ID: 7470473 [TBL] [Abstract][Full Text] [Related]
11. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. Weidlich O; Schalt B; Friedman N; Sheves M; Lanyi JK; Brown LS; Siebert F Biochemistry; 1996 Aug; 35(33):10807-14. PubMed ID: 8718872 [TBL] [Abstract][Full Text] [Related]
12. Photochemistry of a retinal protonated schiff-base analogue mimicking the opsin shift of bacteriorhodopsin. Bismuth O; Friedman N; Sheves M; Ruhman S J Phys Chem B; 2007 Mar; 111(9):2327-34. PubMed ID: 17298090 [TBL] [Abstract][Full Text] [Related]
13. The use of tryptophan mutants in identifying the 296 nm transient absorbing species during the photocycle of bacteriorhodopsin. Wu SG; Jang DJ; el-Sayed MA; Marti T; Mogi T; Gobind Khorana H FEBS Lett; 1991 Jun; 284(1):9-14. PubMed ID: 2060632 [TBL] [Abstract][Full Text] [Related]
14. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. Ahl PL; Stern LJ; Düring D; Mogi T; Khorana HG; Rothschild KJ J Biol Chem; 1988 Sep; 263(27):13594-601. PubMed ID: 3047127 [TBL] [Abstract][Full Text] [Related]
15. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation. Hatanaka M; Kashima R; Kandori H; Friedman N; Sheves M; Needleman R; Lanyi JK; Maeda A Biochemistry; 1997 May; 36(18):5493-8. PubMed ID: 9154932 [TBL] [Abstract][Full Text] [Related]
16. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy. Consani C; Auböck G; van Mourik F; Chergui M Science; 2013 Mar; 339(6127):1586-9. PubMed ID: 23393092 [TBL] [Abstract][Full Text] [Related]
17. Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling. Xu J; Stickrath AB; Bhattacharya P; Nees J; Váró G; Hillebrecht JR; Ren L; Birge RR Biophys J; 2003 Aug; 85(2):1128-34. PubMed ID: 12885657 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. Wang J; Link S; Heyes CD; El-Sayed MA Biophys J; 2002 Sep; 83(3):1557-66. PubMed ID: 12202380 [TBL] [Abstract][Full Text] [Related]
19. Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. Rath P; Krebs MP; He Y; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2272-81. PubMed ID: 8443170 [TBL] [Abstract][Full Text] [Related]
20. Primary photoinduced protein response in bacteriorhodopsin and sensory rhodopsin II. Gross R; Wolf MM; Schumann C; Friedman N; Sheves M; Li L; Engelhard M; Trentmann O; Neuhaus HE; Diller R J Am Chem Soc; 2009 Oct; 131(41):14868-78. PubMed ID: 19778046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]