BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 19416880)

  • 1. Evidence for an ancient adaptive episode of convergent molecular evolution.
    Castoe TA; de Koning AP; Kim HM; Gu W; Noonan BP; Naylor G; Jiang ZJ; Parkinson CL; Pollock DD
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):8986-91. PubMed ID: 19416880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive molecular convergence: Molecular evolution versus molecular phylogenetics.
    Castoe TA; de Koning AP; Pollock DD
    Commun Integr Biol; 2010 Jan; 3(1):67-9. PubMed ID: 20539788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution.
    Douglas DA; Gower DJ
    BMC Genomics; 2010 Jan; 11():14. PubMed ID: 20055998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial DNA sequences of five squamates: phylogenetic affiliation of snakes.
    Kumazawa Y
    DNA Res; 2004 Apr; 11(2):137-44. PubMed ID: 15449546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the mitochondrial genome in snakes: gene rearrangements and phylogenetic relationships.
    Yan J; Li H; Zhou K
    BMC Genomics; 2008 Nov; 9():569. PubMed ID: 19038056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden support from unpromising data sets strongly unites snakes with anguimorph 'lizards'.
    Lee MS
    J Evol Biol; 2009 Jun; 22(6):1308-16. PubMed ID: 19490385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic Convergence Is Not Mirrored at the Protein Level in a Lizard Adaptive Radiation.
    Corbett-Detig RB; Russell SL; Nielsen R; Losos J
    Mol Biol Evol; 2020 Jun; 37(6):1604-1614. PubMed ID: 32027369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early evolution of the venom system in lizards and snakes.
    Fry BG; Vidal N; Norman JA; Vonk FJ; Scheib H; Ramjan SF; Kuruppu S; Fung K; Hedges SB; Richardson MK; Hodgson WC; Ignjatovic V; Summerhayes R; Kochva E
    Nature; 2006 Feb; 439(7076):584-8. PubMed ID: 16292255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evidence and marine snake origins.
    Lee MS
    Biol Lett; 2005 Jun; 1(2):227-30. PubMed ID: 17148173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation.
    Townsend TM; Mulcahy DG; Noonan BP; Sites JW; Kuczynski CA; Wiens JJ; Reeder TW
    Mol Phylogenet Evol; 2011 Nov; 61(2):363-80. PubMed ID: 21787873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadaptive Amino Acid Convergence Rates Decrease over Time.
    Goldstein RA; Pollard ST; Shah SD; Pollock DD
    Mol Biol Evol; 2015 Jun; 32(6):1373-81. PubMed ID: 25737491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evaluation of phylogenetic significances in the highly divergent karyotypes of the genus Gonocephalus (Reptilia: Agamidae) from tropical Asia.
    Honda M; Ota H; Sengoku S; Yong HS; Hikida T
    Zoolog Sci; 2002 Jan; 19(1):129-33. PubMed ID: 12025399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper.
    Yin W; Wang ZJ; Li QY; Lian JM; Zhou Y; Lu BZ; Jin LJ; Qiu PX; Zhang P; Zhu WB; Wen B; Huang YJ; Lin ZL; Qiu BT; Su XW; Yang HM; Zhang GJ; Yan GM; Zhou Q
    Nat Commun; 2016 Oct; 7():13107. PubMed ID: 27708285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations.
    Kumazawa Y
    Gene; 2007 Feb; 388(1-2):19-26. PubMed ID: 17118581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetics and molecular data in snakes: a phylogenetic approach.
    Oguiura N; Ferrarezzi H; Batistic RF
    Cytogenet Genome Res; 2009; 127(2-4):128-42. PubMed ID: 20215738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region.
    Jiang ZJ; Castoe TA; Austin CC; Burbrink FT; Herron MD; McGuire JA; Parkinson CL; Pollock DD
    BMC Evol Biol; 2007 Jul; 7():123. PubMed ID: 17655768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis of reptilian hemoglobins: trees, rates, and divergences.
    Gorr TA; Mable BK; Kleinschmidt T
    J Mol Evol; 1998 Oct; 47(4):471-85. PubMed ID: 9767692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes.
    Vidal N; Hedges SB
    C R Biol; 2005; 328(10-11):1000-8. PubMed ID: 16286089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of taxon sampling on recovering the phylogeny of squamate reptiles based on complete mitochondrial genome and nuclear gene sequence data.
    Albert EM; San Mauro D; García-París M; Rüber L; Zardoya R
    Gene; 2009 Jul; 441(1-2):12-21. PubMed ID: 18639394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications.
    Okajima Y; Kumazawa Y
    BMC Evol Biol; 2010 May; 10():141. PubMed ID: 20465814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.