These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1941714)

  • 1. Spectral and temporal gating mechanisms enhance the clutter rejection in the echolocating bat, Rhinolophus rouxi.
    Neumann I; Schuller G
    J Comp Physiol A; 1991 Jul; 169(1):109-16. PubMed ID: 1941714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binaural influences on Doppler shift compensation of the horseshoe bat Rhinolophus rouxi.
    Behrend O; Kössl M; Schuller G
    J Comp Physiol A; 1999 Dec; 185(6):529-38. PubMed ID: 10633554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.
    Metzner W; Zhang S; Smotherman M
    J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Otoacoustic emissions from the cochlea of the 'constant frequency' bats, Pteronotus parnellii and Rhinolophus rouxi.
    Kössl M
    Hear Res; 1994 Jan; 72(1-2):59-72. PubMed ID: 8150746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The central acoustic tract and audio-vocal coupling in the horseshoe bat, Rhinolophus rouxi.
    Behrend O; Schuller G
    Eur J Neurosci; 2000 Dec; 12(12):4268-80. PubMed ID: 11122338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogenesis of the echolocation system in the rufous horseshoe bat, Rhinolophus rouxi (audition and vocalization in early postnatal development).
    Rübsamen R
    J Comp Physiol A; 1987 Nov; 161(6):899-904. PubMed ID: 3430416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats.
    Smotherman M; Metzner W
    J Neurophysiol; 2003 Feb; 89(2):814-21. PubMed ID: 12574459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. I. Single unit recordings in the ventral motor nucleus of the laryngeal nerves in spontaneously vocalizing bats.
    Rübsamen R; Betz M
    J Comp Physiol A; 1986 Nov; 159(5):675-87. PubMed ID: 3543318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Audiovocal behavior of Doppler-shift compensation in the horseshoe bat survives bilateral lesion of the paralemniscal tegmental area.
    Pillat J; Schuller G
    Exp Brain Res; 1998 Mar; 119(1):17-26. PubMed ID: 9521532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellii).
    Henson OW; Schuller G; Vater M
    J Comp Physiol A; 1985 Nov; 157(5):587-97. PubMed ID: 3837100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An audio-vocal interface in echolocating horseshoe bats.
    Metzner W
    J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The personalized auditory cortex of the mustached bat: adaptation for echolocation.
    Suga N; Niwa H; Taniguchi I; Margoliash D
    J Neurophysiol; 1987 Oct; 58(4):643-54. PubMed ID: 3681389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coding of sinusoidally amplitude modulated acoustic stimuli in the inferior colliculus of the rufous horseshoe bat, Rhinolophus rouxi.
    Reimer K
    J Comp Physiol A; 1987 Aug; 161(2):305-13. PubMed ID: 3625578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats.
    Metzner W
    Nature; 1989 Oct; 341(6242):529-32. PubMed ID: 2797179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine control of call frequency by horseshoe bats.
    Smotherman M; Metzner W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jun; 189(6):435-46. PubMed ID: 12761645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information.
    Olsen JF; Suga N
    J Neurophysiol; 1991 Jun; 65(6):1254-74. PubMed ID: 1875241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosonar signals and cerebellar auditory neurons of the mustached bat.
    Horikawa J; Suga N
    J Neurophysiol; 1986 Jun; 55(6):1247-67. PubMed ID: 3734857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation.
    Gaioni SJ; Riquimaroux H; Suga N
    J Neurophysiol; 1990 Dec; 64(6):1801-17. PubMed ID: 2074465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus parnelli parnelli.
    Gooler DM; O'Neill WE
    J Comp Physiol A; 1987 Aug; 161(2):283-94. PubMed ID: 3625577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.