These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 19417276)
21. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. Li S; Zhang X; Yan B; Yu T Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154 [TBL] [Abstract][Full Text] [Related]
22. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study. Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084 [TBL] [Abstract][Full Text] [Related]
23. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes. Hu J; Jiang Y; Meng X; Lee CS; Lee ST Small; 2005 Apr; 1(4):429-38. PubMed ID: 17193468 [TBL] [Abstract][Full Text] [Related]
25. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. Kar S; Chaudhuri S J Phys Chem B; 2005 Mar; 109(8):3298-302. PubMed ID: 16851356 [TBL] [Abstract][Full Text] [Related]
26. Epitaxial growth of silicon nanowires using an aluminium catalyst. Wang Y; Schmidt V; Senz S; Gösele U Nat Nanotechnol; 2006 Dec; 1(3):186-9. PubMed ID: 18654184 [TBL] [Abstract][Full Text] [Related]
27. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263 [TBL] [Abstract][Full Text] [Related]
28. Growth of silicon nanowires on H-terminated Si {111} surface templates studied by transmission electron microscopy. Ozaki N; Ohno Y; Kikkawa J; Takeda S J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i25-9. PubMed ID: 16157636 [TBL] [Abstract][Full Text] [Related]
29. Twinning-induced kinking of Sb-doped ZnO nanowires. Li S; Zhang X; Zhang L; Gao M Nanotechnology; 2010 Oct; 21(43):435602. PubMed ID: 20876980 [TBL] [Abstract][Full Text] [Related]
30. Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. Schmitt AL; Zhu L; Schmeisser D; Himpsel FJ; Jin S J Phys Chem B; 2006 Sep; 110(37):18142-6. PubMed ID: 16970428 [TBL] [Abstract][Full Text] [Related]
31. Imaging and analysis of nanowires. Bell DC; Wu Y; Barrelet CJ; Gradecak S; Xiang J; Timko BP; Lieber CM Microsc Res Tech; 2004 Aug; 64(5-6):373-89. PubMed ID: 15549698 [TBL] [Abstract][Full Text] [Related]
32. Germanium nanowire growth below the eutectic temperature. Kodambaka S; Tersoff J; Reuter MC; Ross FM Science; 2007 May; 316(5825):729-32. PubMed ID: 17478716 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and characterization of TiOx nanowires using a novel silicon oxide support layer. Lau M; Dai L; Bosnick K; Evoy S Nanotechnology; 2009 Jan; 20(2):025602. PubMed ID: 19417271 [TBL] [Abstract][Full Text] [Related]
34. Detailed modeling of the epitaxial growth of GaAs nanowires. De Jong E; LaPierre RR; Wen JZ Nanotechnology; 2010 Jan; 21(4):045602. PubMed ID: 20009168 [TBL] [Abstract][Full Text] [Related]
35. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. Chen H; Xu J; Chen PC; Fang X; Qiu J; Fu Y; Zhou C ACS Nano; 2011 Oct; 5(10):8383-90. PubMed ID: 21942645 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. Xu L; Su Y; Chen Y; Xiao H; Zhu LA; Zhou Q; Li S J Phys Chem B; 2006 Apr; 110(13):6637-42. PubMed ID: 16570966 [TBL] [Abstract][Full Text] [Related]
37. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst. Christesen JD; Pinion CW; Zhang X; McBride JR; Cahoon JF ACS Nano; 2014 Nov; 8(11):11790-8. PubMed ID: 25363730 [TBL] [Abstract][Full Text] [Related]
38. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst. Hetzel M; Lugstein A; Zeiner C; Wójcik T; Pongratz P; Bertagnolli E Nanotechnology; 2011 Sep; 22(39):395601. PubMed ID: 21891844 [TBL] [Abstract][Full Text] [Related]
39. A simple route to growth of silicon nanowires. Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306 [TBL] [Abstract][Full Text] [Related]
40. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process. Zhu H; Iqbal J; Xu H; Yu D J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]