These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19417279)

  • 1. A growth interruption technique for stacking fault-free nanowire superlattices.
    Mohseni PK; LaPierre RR
    Nanotechnology; 2009 Jan; 20(2):025610. PubMed ID: 19417279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wurtzite-zincblende superlattices in InAs nanowires using a supply interruption method.
    Bolinsson J; Caroff P; Mandl B; Dick KA
    Nanotechnology; 2011 Jul; 22(26):265606. PubMed ID: 21576775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy.
    Koblmüller G; Hertenberger S; Vizbaras K; Bichler M; Bao F; Zhang JP; Abstreiter G
    Nanotechnology; 2010 Sep; 21(36):365602. PubMed ID: 20702932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InAs/InSb nanowire heterostructures grown by chemical beam epitaxy.
    Ercolani D; Rossi F; Li A; Roddaro S; Grillo V; Salviati G; Beltram F; Sorba L
    Nanotechnology; 2009 Dec; 20(50):505605. PubMed ID: 19907063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial core-shell and core-multishell nanowire heterostructures.
    Lauhon LJ; Gudiksen MS; Wang D; Lieber CM
    Nature; 2002 Nov; 420(6911):57-61. PubMed ID: 12422212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.
    Kehagias T; Dimitrakopulos GP; Becker P; Kioseoglou J; Furtmayr F; Koukoula T; Häusler I; Chernikov A; Chatterjee S; Karakostas T; Solowan HM; Schwarz UT; Eickhoff M; Komninou P
    Nanotechnology; 2013 Nov; 24(43):435702. PubMed ID: 24076624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy.
    Vinaji S; Lochthofen A; Mertin W; Regolin I; Gutsche C; Prost W; Tegude FJ; Bacher G
    Nanotechnology; 2009 Sep; 20(38):385702. PubMed ID: 19713586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photovoltaic properties of GaAsP core-shell nanowires on Si(001) substrate.
    Tchernycheva M; Rigutti L; Jacopin G; de Luna Bugallo A; Lavenus P; Julien FH; Timofeeva M; Bouravleuv AD; Cirlin GE; Dhaka V; Lipsanen H; Largeau L
    Nanotechnology; 2012 Jul; 23(26):265402. PubMed ID: 22699243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of dilute nitride GaAsN/GaAs heterostructure nanowires on Si substrates.
    Araki Y; Yamaguchi M; Ishikawa F
    Nanotechnology; 2013 Feb; 24(6):065601. PubMed ID: 23324475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction.
    Mariager SO; Lauridsen SL; Sørensen CB; Dohn A; Willmott PR; Nygård J; Feidenhans'l R
    Nanotechnology; 2010 Mar; 21(11):115603. PubMed ID: 20173223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires.
    Koval OY; Fedorov VV; Bolshakov AD; Eliseev IE; Fedina SV; Sapunov GA; Udovenko SA; Dvoretckaia LN; Kirilenko DA; Burkovsky RG; Mukhin IS
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass transport model for semiconductor nanowire growth.
    Johansson J; Svensson CP; Mårtensson T; Samuelson L; Seifert W
    J Phys Chem B; 2005 Jul; 109(28):13567-71. PubMed ID: 16852698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking.
    Arbiol J; Estradé S; Prades JD; Cirera A; Furtmayr F; Stark C; Laufer A; Stutzmann M; Eickhoff M; Gass MH; Bleloch AL; Peiró F; Morante JR
    Nanotechnology; 2009 Apr; 20(14):145704. PubMed ID: 19420534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition.
    Zhang XT; Liu Z; Li Q; Hark SK
    J Phys Chem B; 2005 Sep; 109(38):17913-6. PubMed ID: 16853298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic hydride vapour phase epitaxy growth of GaN nanowires.
    Seryogin G; Shalish I; Moberlychan W; Narayanamurti V
    Nanotechnology; 2005 Oct; 16(10):2342-5. PubMed ID: 20818016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.