BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 19417287)

  • 1. Parallel and orthogonal E-field alignment of single-walled carbon nanotubes by ac dielectrophoresis.
    Padmaraj D; Zagozdzon-Wosik W; Xie LM; Hadjiev VG; Cherukuri P; Wosik J
    Nanotechnology; 2009 Jan; 20(3):035201. PubMed ID: 19417287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions.
    Burg BR; Schneider J; Bianco V; Schirmer NC; Poulikakos D
    Langmuir; 2010 Jul; 26(13):10419-24. PubMed ID: 20527829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes.
    Zhou R; Wang P; Chang HC
    Electrophoresis; 2006 Apr; 27(7):1376-85. PubMed ID: 16568404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly.
    Gao J; Yu A; Itkis ME; Bekyarova E; Zhao B; Niyogi S; Haddon RC
    J Am Chem Soc; 2004 Dec; 126(51):16698-9. PubMed ID: 15612688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable interconnection of single-walled carbon nanotubes under ac electric field.
    Chen Z; Yang Y; Chen F; Qing Q; Wu Z; Liu Z
    J Phys Chem B; 2005 Jun; 109(23):11420-3. PubMed ID: 16852396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound.
    Toyoda S; Yamaguchi Y; Hiwatashi M; Tomonari Y; Murakami H; Nakashima N
    Chem Asian J; 2007 Jan; 2(1):145-9. PubMed ID: 17441147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy.
    Huang S; Qian Y; Chen J; Cai Q; Wan L; Wang S; Hu W
    J Am Chem Soc; 2008 Sep; 130(36):11860-1. PubMed ID: 18702491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antenna chemistry with metallic single-walled carbon nanotubes.
    Duque JG; Pasquali M; Schmidt HK
    J Am Chem Soc; 2008 Nov; 130(46):15340-7. PubMed ID: 18942783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis.
    Mendes MJ; Schmidt HK; Pasquali M
    J Phys Chem B; 2008 Jun; 112(25):7467-77. PubMed ID: 18512886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis.
    Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M
    Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.
    Wang Y; Pillai SK; Chan-Park MB
    Small; 2013 Sep; 9(17):2960-9. PubMed ID: 23441038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous dielectrophoretic separation and assembly of single-walled carbon nanotubes on multigap nanoelectrodes and their thermal sensing properties.
    Chen Z; Wu Z; Tong L; Pan H; Liu Z
    Anal Chem; 2006 Dec; 78(23):8069-75. PubMed ID: 17134141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants.
    Kim Y; Hong S; Jung S; Strano MS; Choi J; Baik S
    J Phys Chem B; 2006 Feb; 110(4):1541-5. PubMed ID: 16471712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance.
    Heller I; Kong J; Williams KA; Dekker C; Lemay SG
    J Am Chem Soc; 2006 Jun; 128(22):7353-9. PubMed ID: 16734491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical alignment of single-walled carbon nanotube films formed by electrophoretic deposition.
    Kim SK; Lee H; Tanaka H; Weiss PS
    Langmuir; 2008 Nov; 24(22):12936-42. PubMed ID: 18925761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.