BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 19417305)

  • 1. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.
    Simoes R; Silva J; Vaia R; Sencadas V; Costa P; Gomes J; Lanceros-Méndez S
    Nanotechnology; 2009 Jan; 20(3):035703. PubMed ID: 19417305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-functionalized MWNTs with emeraldine base: preparation and improving dielectric properties of polymer nanocomposites.
    Zhou T; Zha JW; Hou Y; Wang D; Zhao J; Dang ZM
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4557-60. PubMed ID: 22121943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes.
    Kim J; Hong SM; Kwak S; Seo Y
    Phys Chem Chem Phys; 2009 Dec; 11(46):10851-9. PubMed ID: 19924319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold.
    Yang K; Huang X; Fang L; He J; Jiang P
    Nanoscale; 2014 Dec; 6(24):14740-53. PubMed ID: 25352354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrical properties of polymer nanocomposites with carbon nanotube fillers.
    Hu N; Masuda Z; Yan C; Yamamoto G; Fukunaga H; Hashida T
    Nanotechnology; 2008 May; 19(21):215701. PubMed ID: 21730580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging.
    Loos J; Alexeev A; Grossiord N; Koning CE; Regev O
    Ultramicroscopy; 2005 Sep; 104(2):160-7. PubMed ID: 15885910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold.
    Fan P; Wang L; Yang J; Chen F; Zhong M
    Nanotechnology; 2012 Sep; 23(36):365702. PubMed ID: 22910284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron tunneling in carbon nanotube composites.
    Gau C; Kuo CY; Ko HS
    Nanotechnology; 2009 Sep; 20(39):395705. PubMed ID: 19724108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications.
    Dang ZM; Zheng MS; Zha JW
    Small; 2016 Apr; 12(13):1688-701. PubMed ID: 26865507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black.
    Ma PC; Liu MY; Zhang H; Wang SQ; Wang R; Wang K; Wong YK; Tang BZ; Hong SH; Paik KW; Kim JK
    ACS Appl Mater Interfaces; 2009 May; 1(5):1090-6. PubMed ID: 20355896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.
    Wang Z; Liu J; Wu S; Wang W; Zhang L
    Phys Chem Chem Phys; 2010 Mar; 12(12):3014-30. PubMed ID: 20449394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelasticity in carbon nanotube composites.
    Suhr J; Koratkar N; Keblinski P; Ajayan P
    Nat Mater; 2005 Feb; 4(2):134-7. PubMed ID: 15640807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer.
    Kim P; Doss NM; Tillotson JP; Hotchkiss PJ; Pan MJ; Marder SR; Li J; Calame JP; Perry JW
    ACS Nano; 2009 Sep; 3(9):2581-92. PubMed ID: 19655729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.
    Connolly T; Smith RC; Hernandez Y; Gun'ko Y; Coleman JN; Carey JD
    Small; 2009 Apr; 5(7):826-31. PubMed ID: 19199333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites.
    Han X; Chen S; Lv X; Luo H; Zhang D; Bowen CR
    Phys Chem Chem Phys; 2018 Jan; 20(4):2826-2837. PubMed ID: 29327019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites.
    Balasubramanian B; Kraemer KL; Valloppilly SR; Ducharme S; Sellmyer DJ
    Nanotechnology; 2011 Oct; 22(40):405605. PubMed ID: 21911930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids.
    Guo Q; Xue Q; Sun J; Dong M; Xia F; Zhang Z
    Nanoscale; 2015 Feb; 7(8):3660-7. PubMed ID: 25640081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving dielectric properties of BaTiO₃/ferroelectric polymer composites by employing surface hydroxylated BaTiO₃ nanoparticles.
    Zhou T; Zha JW; Cui RY; Fan BH; Yuan JK; Dang ZM
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2184-8. PubMed ID: 21644553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A complex network based simulation approach to predict the electrical properties of nanocomposites.
    Simoes R; Silva J; Vaia R
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2451-7. PubMed ID: 20355447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental approach to the percolation of sticky nanotubes.
    Vigolo B; Coulon C; Maugey M; Zakri C; Poulin P
    Science; 2005 Aug; 309(5736):920-3. PubMed ID: 16081733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.