These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 19417306)
1. Temperature dependence of frictional force in carbon nanotube oscillators. Chen Y; Yang J; Wang X; Ni Z; Li D Nanotechnology; 2009 Jan; 20(3):035704. PubMed ID: 19417306 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers. Zhang X; Li Q ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757 [TBL] [Abstract][Full Text] [Related]
8. Phononic Origins of Friction in Carbon Nanotube Oscillators. Prasad MV; Bhattacharya B Nano Lett; 2017 Apr; 17(4):2131-2137. PubMed ID: 28234012 [TBL] [Abstract][Full Text] [Related]
9. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes. Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512 [TBL] [Abstract][Full Text] [Related]
10. The effect of a mechanical force on quantum reaction rate: quantum Bell formula. Makarov DE J Chem Phys; 2011 Nov; 135(19):194112. PubMed ID: 22112071 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the effects of commensurability on friction between concentric carbon nanotubes. Zhu C; Shenai PM; Zhao Y Nanotechnology; 2012 Jan; 23(1):015702. PubMed ID: 22156240 [TBL] [Abstract][Full Text] [Related]
12. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter. Bifano MF; Kaul PB; Prakash V Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943 [TBL] [Abstract][Full Text] [Related]
14. Molecular-dynamics studies of bending mechanical properties of empty and C60-filled carbon nanotubes under nanoindentation. Jeng YR; Tsai PC; Fang TH J Chem Phys; 2005 Jun; 122(22):224713. PubMed ID: 15974709 [TBL] [Abstract][Full Text] [Related]
15. [Study of friction and loosening in hip endoprostheses]. Dovzak Bajs I; Cvjetko I; Car D; Kokić V Acta Med Croatica; 2002; 56(4-5):151-5. PubMed ID: 12768893 [TBL] [Abstract][Full Text] [Related]
16. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes. Zhu C; Guo W; Yu T Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258 [TBL] [Abstract][Full Text] [Related]
17. High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube. Liew KM; Yuan J Nanotechnology; 2011 Feb; 22(8):085701. PubMed ID: 21242624 [TBL] [Abstract][Full Text] [Related]
18. Energy dissipation mechanisms in carbon nanotube oscillators. Zhao Y; Ma CC; Chen G; Jiang Q Phys Rev Lett; 2003 Oct; 91(17):175504. PubMed ID: 14611358 [TBL] [Abstract][Full Text] [Related]
19. Friction and adhesion between C60 single crystal surfaces and AFM tips: effects of the orientational phase transition. Liang Q; Li H; Xu Y; Xiao X J Phys Chem B; 2006 Jan; 110(1):403-9. PubMed ID: 16471549 [TBL] [Abstract][Full Text] [Related]
20. Langevin model of the temperature and hydration dependence of protein vibrational dynamics. Moritsugu K; Smith JC J Phys Chem B; 2005 Jun; 109(24):12182-94. PubMed ID: 16852503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]