BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19417306)

  • 1. Temperature dependence of frictional force in carbon nanotube oscillators.
    Chen Y; Yang J; Wang X; Ni Z; Li D
    Nanotechnology; 2009 Jan; 20(3):035704. PubMed ID: 19417306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.
    Zhang X; Li Q
    ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic sliding friction between concentric carbon nanotubes.
    Tangney P; Louie SG; Cohen ML
    Phys Rev Lett; 2004 Aug; 93(6):065503. PubMed ID: 15323643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy.
    Strus MC; Lahiji RR; Ares P; López V; Raman A; Reifenberger R
    Nanotechnology; 2009 Sep; 20(38):385709. PubMed ID: 19713587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal effect on DWCNTs as rotational bearings.
    Zhu BE; Pan ZY; Wang YX; Xiao Y
    Nanotechnology; 2008 Dec; 19(49):495708. PubMed ID: 21730688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW; Cao BY; Guo ZY
    Nanotechnology; 2009 Dec; 20(49):495503. PubMed ID: 19893145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study of carbon nanotube oscillators revisited.
    Zhao X; Cummings PT
    J Chem Phys; 2006 Apr; 124(13):134705. PubMed ID: 16613466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phononic Origins of Friction in Carbon Nanotube Oscillators.
    Prasad MV; Bhattacharya B
    Nano Lett; 2017 Apr; 17(4):2131-2137. PubMed ID: 28234012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
    Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV
    Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of a mechanical force on quantum reaction rate: quantum Bell formula.
    Makarov DE
    J Chem Phys; 2011 Nov; 135(19):194112. PubMed ID: 22112071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the effects of commensurability on friction between concentric carbon nanotubes.
    Zhu C; Shenai PM; Zhao Y
    Nanotechnology; 2012 Jan; 23(1):015702. PubMed ID: 22156240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative and submolecular dissipation mechanisms of sliding friction in complex organic systems.
    Knorr DB; Gray TO; Overney RM
    J Chem Phys; 2008 Aug; 129(7):074504. PubMed ID: 19044780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular-dynamics studies of bending mechanical properties of empty and C60-filled carbon nanotubes under nanoindentation.
    Jeng YR; Tsai PC; Fang TH
    J Chem Phys; 2005 Jun; 122(22):224713. PubMed ID: 15974709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of friction and loosening in hip endoprostheses].
    Dovzak Bajs I; Cvjetko I; Car D; Kokić V
    Acta Med Croatica; 2002; 56(4-5):151-5. PubMed ID: 12768893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes.
    Zhu C; Guo W; Yu T
    Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube.
    Liew KM; Yuan J
    Nanotechnology; 2011 Feb; 22(8):085701. PubMed ID: 21242624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy dissipation mechanisms in carbon nanotube oscillators.
    Zhao Y; Ma CC; Chen G; Jiang Q
    Phys Rev Lett; 2003 Oct; 91(17):175504. PubMed ID: 14611358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction and adhesion between C60 single crystal surfaces and AFM tips: effects of the orientational phase transition.
    Liang Q; Li H; Xu Y; Xiao X
    J Phys Chem B; 2006 Jan; 110(1):403-9. PubMed ID: 16471549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Langevin model of the temperature and hydration dependence of protein vibrational dynamics.
    Moritsugu K; Smith JC
    J Phys Chem B; 2005 Jun; 109(24):12182-94. PubMed ID: 16852503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.