These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19417375)

  • 21. Synthesis of Sn doped CuO nanotubes from core-shell Cu/SnO(2) nanowires by the Kirkendall effect.
    Lai M; Mubeen S; Chartuprayoon N; Mulchandani A; Deshusses MA; Myung NV
    Nanotechnology; 2010 Jul; 21(29):295601. PubMed ID: 20585175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors.
    Liao L; Zhang Z; Yan B; Zheng Z; Bao QL; Wu T; Li CM; Shen ZX; Zhang JX; Gong H; Li JC; Yu T
    Nanotechnology; 2009 Feb; 20(8):085203. PubMed ID: 19417443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CuO based inorganic-organic hybrid nanowires: a new type of highly sensitive humidity sensor.
    Yuan C; Xu Y; Deng Y; Jiang N; He N; Dai L
    Nanotechnology; 2010 Oct; 21(41):415501. PubMed ID: 20852353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution-Based Large-Area Assembly of Coaxial Inorganic-Organic Hybrid Nanowires for Fast Ambipolar Charge Transport.
    Cox R; Olson GT; Pfau M; Eshaghi N; Barcus K; Ramirez D; Fernando R; Zhang S
    ACS Appl Mater Interfaces; 2017 May; 9(19):16397-16403. PubMed ID: 28467710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photodetecting properties of single CuO-ZnO core-shell nanowires with p-n radial heterojunction.
    Costas A; Florica C; Preda N; Kuncser A; Enculescu I
    Sci Rep; 2020 Oct; 10(1):18690. PubMed ID: 33122742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning.
    Chen H; Wang N; Di J; Zhao Y; Song Y; Jiang L
    Langmuir; 2010 Jul; 26(13):11291-6. PubMed ID: 20337483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical and electrical study of core-shell silicon nanowires for solar applications.
    Li Z; Wang J; Singh N; Lee S
    Opt Express; 2011 Sep; 19 Suppl 5():A1057-66. PubMed ID: 21935248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous self-organization of Cu2O/CuO core-shell nanowires from copper nanoparticles.
    Ji JY; Shih PH; Yang CC; Chan TS; Ma YR; Wu SY
    Nanotechnology; 2010 Jan; 21(4):045603. PubMed ID: 20009171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting.
    Zhong M; Li Y; Yamada I; Delaunay JJ
    Nanoscale; 2012 Mar; 4(5):1509-14. PubMed ID: 22200054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications.
    Wang P; Zhao X; Li B
    Opt Express; 2011 Jun; 19(12):11271-9. PubMed ID: 21716357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.
    Nowzari A; Heurlin M; Jain V; Storm K; Hosseinnia A; Anttu N; Borgström MT; Pettersson H; Samuelson L
    Nano Lett; 2015 Mar; 15(3):1809-14. PubMed ID: 25671437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current transport mechanism in a metal-GaN nanowire Schottky diode.
    Lee SY; Lee SK
    Nanotechnology; 2007 Dec; 18(49):495701. PubMed ID: 20442482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab initio electron transport study of carbon and boron-nitrogen nanowires.
    Shi XQ; Dai ZX; Zheng XH; Zeng Z
    J Phys Chem B; 2006 Aug; 110(34):16902-7. PubMed ID: 16927979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation between the performance and microstructure of Ti/Al/Ti/Au Ohmic contacts to p-type silicon nanowires.
    Motayed A; Bonevich JE; Krylyuk S; Davydov AV; Aluri G; Rao MV
    Nanotechnology; 2011 Feb; 22(7):075206. PubMed ID: 21233538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encoding Active Device Elements at Nanowire Tips.
    No YS; Gao R; Mankin MN; Day RW; Park HG; Lieber CM
    Nano Lett; 2016 Jul; 16(7):4713-9. PubMed ID: 27337041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of surface states on electron transport through intrinsic Ge nanowires.
    Hanrath T; Korgel BA
    J Phys Chem B; 2005 Mar; 109(12):5518-24. PubMed ID: 16851592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Itinerant helimagnetic single-crystalline MnSi nanowires.
    Seo K; Yoon H; Ryu SW; Lee S; Jo Y; Jung MH; Kim J; Choi YK; Kim B
    ACS Nano; 2010 May; 4(5):2569-76. PubMed ID: 20426410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical properties of GaSb/InAsSb core/shell nanowires.
    Ganjipour B; Sepehri S; Dey AW; Tizno O; Borg BM; Dick KA; Samuelson L; Wernersson LE; Thelander C
    Nanotechnology; 2014 Oct; 25(42):425201. PubMed ID: 25264978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance.
    Li Y; Yang XY; Rooke J; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(2):303-12. PubMed ID: 20546764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The electronic transport properties of ternary Cd(1-x)Zn(x)S nanowire networks.
    Joung D; Arif M; Biswas S; Kar S; Santra S; Khondaker SI
    Nanotechnology; 2009 Nov; 20(44):445204. PubMed ID: 19809117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.