These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19417378)

  • 1. The mechanism behind the selective metal nanoscale etch method for precise metal nanopatterning.
    Lee BC; Kim MH; Krishnan JN; Kim SK; Moon S; Lee SY; Shin HJ
    Nanotechnology; 2009 Feb; 20(6):065302. PubMed ID: 19417378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.
    Xiang C; Kung SC; Taggart DK; Yang F; Thompson MA; Güell AG; Yang Y; Penner RM
    ACS Nano; 2008 Sep; 2(9):1939-49. PubMed ID: 19206435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid sacrificial layer etching for the fabrication of nanochannels with integrated metal electrodes.
    Sparreboom W; Eijkel JC; Bomer J; van den Berg A
    Lab Chip; 2008 Mar; 8(3):402-7. PubMed ID: 18305857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction.
    Teng X; Wang Q; Liu P; Han W; Frenkel AI; Wen W; Marinkovic N; Hanson JC; Rodriguez JA
    J Am Chem Soc; 2008 Jan; 130(3):1093-101. PubMed ID: 18161978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal reactivity of metal and multimetal nanostructures for selective, stepwise, and spatially-controlled solid-state modification.
    Leonard BM; Anderson ME; Oyler KD; Phan TH; Schaak RE
    ACS Nano; 2009 Apr; 3(4):940-8. PubMed ID: 19243115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures.
    Long R; Chen J; Lim JH; Wiley JB; Zhou W
    Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys.
    Sun Y; Wiley B; Li ZY; Xia Y
    J Am Chem Soc; 2004 Aug; 126(30):9399-406. PubMed ID: 15281832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of Ni nanowires having periodically hollow nanostructures.
    Sada T; Fujigaya T; Nakashima N
    Nanoscale; 2014 Oct; 6(19):11484-8. PubMed ID: 25154433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi-directional Kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition.
    Peng Q; Sun XY; Spagnola JC; Saquing C; Khan SA; Spontak RJ; Parsons GN
    ACS Nano; 2009 Mar; 3(3):546-54. PubMed ID: 19222233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of hollow Ni2p nanoparticles based on the nanoscale Kirkendall effect.
    Chiang RK; Chiang RT
    Inorg Chem; 2007 Jan; 46(2):369-71. PubMed ID: 17279811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of thin-film-fracture-based nanowires into microchip fabrication.
    Jebril S; Elbahri M; Titazu G; Subannajui K; Essa S; Niebelschütz F; Röhlig CC; Cimalla V; Ambacher O; Schmidt B; Kabiraj D; Avasti D; Adelung R
    Small; 2008 Dec; 4(12):2214-21. PubMed ID: 18972459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions.
    Wang J; Yang Q; Zhang Z; Sun S
    Chemistry; 2010 Jul; 16(26):7916-24. PubMed ID: 20491119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks.
    Kosiorek A; Kandulski W; Glaczynska H; Giersig M
    Small; 2005 Apr; 1(4):439-44. PubMed ID: 17193469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect.
    Jin Fan H; Knez M; Scholz R; Nielsch K; Pippel E; Hesse D; Zacharias M; Gösele U
    Nat Mater; 2006 Aug; 5(8):627-31. PubMed ID: 16845423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopatterning of ultrananocrystalline diamond nanowires.
    Wang X; Ocola LE; Divan RS; Sumant AV
    Nanotechnology; 2012 Feb; 23(7):075301. PubMed ID: 22261094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response.
    Herderick ED; Polomoff NA; Huey BD; Padture NP
    Nanotechnology; 2010 Aug; 21(33):335601. PubMed ID: 20657040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective electroless metallization of patterned polymeric films for lithography applications.
    Zabetakis D; Dressick WJ
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):4-25. PubMed ID: 20355746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.