BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19417399)

  • 1. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature.
    Ishida T; Nakajima Y; Endo J; Collard D; Fujita H
    Nanotechnology; 2009 Feb; 20(6):065705. PubMed ID: 19417399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural and compositional analysis of strontium-doped lead zirconate titanate thin films on gold-coated silicon substrates.
    Sriram S; Bhaskaran M; Mitchell DR; Short KT; Holland AS; Mitchell A
    Microsc Microanal; 2009 Feb; 15(1):30-5. PubMed ID: 19144255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct UHV-TEM observation of palladium clusters on a silicon surface.
    Takeguchi M; Mitsuishi K; Tanaka M; Furuya K
    Microsc Microanal; 2004 Feb; 10(1):134-8. PubMed ID: 15306077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water as buffer material for gold nanocluster growth.
    Gross E; Horowitz Y; Asscher M
    Langmuir; 2005 Sep; 21(19):8892-8. PubMed ID: 16142975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ TEM observation of nanobonding formation between silicon MEMS tips.
    Ishida T; Kakushima K; Sasaki N; Fujita H
    Nanotechnology; 2010 Oct; 21(43):435705. PubMed ID: 20876977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion of buffer layer assisted grown gold nanoclusters on Ru(100) and p(1 x 2)-O/Ru(100) surfaces.
    Kerner G; Horowitz Y; Asscher M
    J Phys Chem B; 2005 Mar; 109(10):4545-53. PubMed ID: 16851531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling.
    Lei A; Petersen DH; Booth TJ; Homann LV; Kallesoe C; Sukas OS; Gyrsting Y; Molhave K; Boggild P
    Nanotechnology; 2010 Oct; 21(40):405304. PubMed ID: 20829573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral patterns of gold nanoclusters in silicon (100) produced by metal vapour vacuum arc implantation of gold ions.
    Venkatachalam DK; Sood DK; Bhargava SK
    Nanotechnology; 2008 Jan; 19(1):015605. PubMed ID: 21730540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoclusters of gold on a high-area support: almost uniform nanoclusters imaged by scanning transmission electron microscopy.
    Uzun A; Ortalan V; Hao Y; Browning ND; Gates BC
    ACS Nano; 2009 Nov; 3(11):3691-5. PubMed ID: 19863069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement.
    Sayed SY; Wang F; Malac M; Meldrum A; Egerton RF; Buriak JM
    ACS Nano; 2009 Sep; 3(9):2809-17. PubMed ID: 19719082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of passivated silicon nanoclusters: the role of synthesis.
    Draeger EW; Grossman JC; Williamson AJ; Galli G
    J Chem Phys; 2004 Jun; 120(22):10807-14. PubMed ID: 15268108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional atomic-scale structure of size-selected gold nanoclusters.
    Li ZY; Young NP; Di Vece M; Palomba S; Palmer RE; Bleloch AL; Curley BC; Johnston RL; Jiang J; Yuan J
    Nature; 2008 Jan; 451(7174):46-8. PubMed ID: 18066049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray photoelectron spectroscopic analysis of Si nanoclusters in SiO2 matrix.
    Dane A; Demirok UK; Aydinli A; Suzer S
    J Phys Chem B; 2006 Jan; 110(3):1137-40. PubMed ID: 16471655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere).
    Mougin K; Gnecco E; Rao A; Cuberes MT; Jayaraman S; McFarland EW; Haidara H; Meyer E
    Langmuir; 2008 Feb; 24(4):1577-81. PubMed ID: 18201112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip.
    Chung KH; Lee YH; Kim DE
    Ultramicroscopy; 2005 Jan; 102(2):161-71. PubMed ID: 15590139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-terminal electric transport measurements on gold nano-particles combined with ex situ TEM inspection.
    Gao B; Osorio EA; Babaei Gaven K; van der Zant HS
    Nanotechnology; 2009 Oct; 20(41):415207. PubMed ID: 19762943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes.
    Charlier JC; Arnaud L; Avilov IV; Delgado M; Demoisson F; Espinosa EH; Ewels CP; Felten A; Guillot J; Ionescu R; Leghrib R; Llobet E; Mansour A; Migeon HN; Pireaux JJ; Reniers F; Suarez-Martinez I; Watson GE; Zanolli Z
    Nanotechnology; 2009 Sep; 20(37):375501. PubMed ID: 19706940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.