BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19417501)

  • 1. Conductance gaps in graphene ribbons designed by molecular aggregations.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2009 Mar; 20(9):095705. PubMed ID: 19417501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport properties of graphene nanoribbons with side-attached organic molecules.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chair and twist-boat membranes in hydrogenated graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2009 Dec; 3(12):4017-22. PubMed ID: 19947580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging universal conductance fluctuations in graphene.
    Borunda MF; Berezovsky J; Westervelt RM; Heller EJ
    ACS Nano; 2011 May; 5(5):3622-7. PubMed ID: 21466198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic mechanism of 1/f noise in graphene: role of energy band dispersion.
    Pal AN; Ghatak S; Kochat V; Sneha ES; Sampathkumar A; Raghavan S; Ghosh A
    ACS Nano; 2011 Mar; 5(3):2075-81. PubMed ID: 21332148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying disorder in graphite-based systems by Raman spectroscopy.
    Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R
    Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transport in single molecules: from benzene to graphene.
    Chen F; Tao NJ
    Acc Chem Res; 2009 Mar; 42(3):429-38. PubMed ID: 19253984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.
    Kotakoski J; Santos-Cottin D; Krasheninnikov AV
    ACS Nano; 2012 Jan; 6(1):671-6. PubMed ID: 22188561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical investigation of electronic structures and properties of C60-gold nanocontacts.
    Shukla MK; Dubey M; Leszczynski J
    ACS Nano; 2008 Feb; 2(2):227-34. PubMed ID: 19206622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-metallic zigzag carbon nanotube dots.
    Hod O; Scuseria GE
    ACS Nano; 2008 Nov; 2(11):2243-9. PubMed ID: 19206389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings.
    Nguyen VH; Niquet YM; Dollfus P
    J Phys Condens Matter; 2014 May; 26(20):205301. PubMed ID: 24785639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality effect in disordered graphene ribbon junctions.
    Long W
    J Phys Condens Matter; 2012 May; 24(17):175302. PubMed ID: 22469635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.