These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19417943)

  • 1. Mononuclear and binuclear manganese carbonyl hydrides: the preference for bridging hydrogens over bridging carbonyls.
    Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2009 May; (19):3774-85. PubMed ID: 19417943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese carbonyl nitrosyls: comparison with isoelectronic iron carbonyl derivatives.
    Wang H; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2006 Dec; 45(26):10849-58. PubMed ID: 17173444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.
    Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 May; 48(10):4580-91. PubMed ID: 19371100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binuclear manganese and rhenium carbonyls M2(CO)n (n = 10, 9, 8, 7): comparison of first row and third row transition metal carbonyl structures.
    Xu B; Li QS; Xie Y; King RB; Schaefer Iii HF
    Dalton Trans; 2008 May; (18):2495-502. PubMed ID: 18461206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binuclear iron carbonyl nitrosyls: bridging nitrosyls versus bridging carbonyls.
    Wang H; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 Apr; 47(8):3045-55. PubMed ID: 18335979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron carbonyl thiocarbonyls: effect of substituting a thiocarbonyl group for a carbonyl group in mononuclear and binuclear iron carbonyl derivatives.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 Mar; 48(5):1974-88. PubMed ID: 19235959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possibilities for titanium-titanium multiple bonding in binuclear cyclopentadienyltitanium carbonyls: 16-electron metal configurations and four-electron donor bridging carbonyl groups as alternatives.
    Zhang X; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2010 Feb; 49(4):1961-75. PubMed ID: 20055429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of binuclear chromium carbonyls by substitution of thiocarbonyl groups for carbonyl groups: nearly linear structures for Cr(2)(CS)(2)(CO)(9).
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Jan; 114(1):486-97. PubMed ID: 19961211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binuclear nickel carbonyl thiocarbonyls: metal-metal multiple bonds versus four-electron donor thiocarbonyl groups.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Feb; 114(6):2365-75. PubMed ID: 20104902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From two-electron via four-electron to six-electron donor carbonyl groups in trinuclear derivatives of the oxophilic metal niobium.
    Peng B; Li QS; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2009 May; (19):3748-55. PubMed ID: 19417940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binuclear homoleptic manganese carbonyls: Mn2(CO)x (x = 10, 9, 8, 7).
    Xie Y; Jang JH; King RB; Schaefer HF
    Inorg Chem; 2003 Aug; 42(17):5219-30. PubMed ID: 12924893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binuclear and trinuclear chromium carbonyls with linear bridging carbonyl groups: isocarbonyl versus carbonyl bonding of carbon monoxide ligands.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Apr; 114(13):4672-9. PubMed ID: 20235565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binuclear cobalt thiocarbonyl carbonyl derivatives: comparison with homoleptic binuclear cobalt carbonyls.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 Jul; 48(13):5973-82. PubMed ID: 19489594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mononuclear and binuclear rhenium carbonyl nitrosyls: comparison with their manganese analogues.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 Nov; 47(21):9836-47. PubMed ID: 18823112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.
    Li N; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Nov; 114(43):11670-80. PubMed ID: 20942474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimetallocene carbonyls of the third-row transition metals: the quest for high-order metal-metal multiple bonds.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2009 Nov; 113(45):12470-7. PubMed ID: 19627131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heptahapticity in binuclear (cycloheptatrienyl)molybdenum carbonyl derivatives: the interplay between ring hapticity/planarity and metal-metal multiple bonding.
    Feng X; Xie C; Xie Y; King RB; Schaefer HF
    Chem Asian J; 2010 May; 5(5):1192-201. PubMed ID: 20391467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium carbonyl nitrosyls: comparison with isoelectronic manganese carbonyl derivatives.
    Wang H; Xie Y; Zhang JD; King RB; Schaefer HF
    Inorg Chem; 2007 Mar; 46(5):1836-46. PubMed ID: 17269763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boronyl ligand as a member of the isoelectronic series BO(-) → CO → NO(+): viable cobalt carbonyl boronyl derivatives?
    Gong X; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2010 Dec; 49(23):10820-32. PubMed ID: 21067156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsaturation and variable hapticity in binuclear azulene manganese carbonyl complexes.
    Sun Z; Wang H; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2010 Nov; 39(44):10702-11. PubMed ID: 20957242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.