These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19418205)

  • 1. Effect of grooves on adsorption of RGD tripeptide onto rutile TiO(2) (110) surface.
    Chen M; Wu C; Song D; Dong W; Li K
    J Mater Sci Mater Med; 2009 Sep; 20(9):1831-8. PubMed ID: 19418205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RGD tripeptide onto perfect and grooved rutile surfaces in aqueous solution: adsorption behaviors and dynamics.
    Chen M; Wu C; Song D; Li K
    Phys Chem Chem Phys; 2010 Jan; 12(2):406-15. PubMed ID: 20023818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of tripeptide RGD on rutile TiO(2) nanotopography surface in aqueous solution.
    Song DP; Chen MJ; Liang YC; Bai QS; Chen JX; Zheng XF
    Acta Biomater; 2010 Feb; 6(2):684-94. PubMed ID: 19643209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of RGD peptide adsorption on titanium oxide surfaces.
    Zhang HP; Lu X; Fang LM; Weng J; Huang N; Leng Y
    J Mater Sci Mater Med; 2008 Nov; 19(11):3437-41. PubMed ID: 18584123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations.
    Carravetta V; Monti S
    J Phys Chem B; 2006 Mar; 110(12):6160-9. PubMed ID: 16553430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation.
    Zhang HP; Lu X; Leng Y; Watari F; Weng J; Feng B; Qu S
    J Biomed Mater Res A; 2011 Feb; 96(2):466-76. PubMed ID: 21171166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-TiO(2) interaction in aqueous solution: conformational dynamics of RGD using different water models.
    Wu C; Chen M; Guo C; Zhao X; Yuan C
    J Phys Chem B; 2010 Apr; 114(13):4692-701. PubMed ID: 20235568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of arginine-glycine-aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation.
    Wu C; Chen M; Skelton AA; Cummings PT; Zheng T
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2567-79. PubMed ID: 23461392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO
    Wagstaffe M; Hussain H; Taylor M; Murphy M; Silikas N; Thomas AG
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110030. PubMed ID: 31546374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of collagen adsorption onto grooved rutile surface: the effects of groove width.
    Chen M; Zheng T; Wu C; Xing C
    Colloids Surf B Biointerfaces; 2014 Sep; 121():150-7. PubMed ID: 24972291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: the effect of cation mediation on Asp adsorption.
    Wu C; Skelton AA; Chen M; Vlček L; Cummings PT
    Langmuir; 2012 Feb; 28(5):2799-811. PubMed ID: 22220570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular understanding of conformational dynamics of a fibronectin module on rutile (110) surface.
    Wu C; Chen M; Xing C
    Langmuir; 2010 Oct; 26(20):15972-81. PubMed ID: 20857968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degree of immobilization of synthetic RGDS(PO(3)H(2))PA peptides on titanium surfaces.
    Abe Y; Okazaki Y; Hiasa K; Hirata I; Yoshida Y; Taji T; Suzuki K; Okazaki M; Akagawa Y
    Dent Mater J; 2010 Nov; 29(6):668-72. PubMed ID: 21099158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation.
    Ryu JJ; Park K; Kim HS; Jeong CM; Huh JB
    Int J Oral Maxillofac Implants; 2013; 28(4):963-72. PubMed ID: 23869353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces.
    Huang WF; Raghunath P; Lin MC
    J Comput Chem; 2011 Apr; 32(6):1065-81. PubMed ID: 21387334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide/TiO2 surface interaction: a theoretical and experimental study on the structure of adsorbed ALA-GLU and ALA-LYS.
    Monti S; Carravetta V; Battocchio C; Iucci G; Polzonetti G
    Langmuir; 2008 Apr; 24(7):3205-14. PubMed ID: 18275228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of synthetic RGDS(PO3H2)PA peptide adsorption using a titanium surface plasmon resonance biosensor.
    Abe Y; Hiasa K; Hirata I; Okazaki Y; Nogami K; Mizumachi W; Yoshida Y; Suzuki K; Okazaki M; Akagawa Y
    J Mater Sci Mater Med; 2011 Mar; 22(3):657-61. PubMed ID: 21221730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation.
    Kämmerer PW; Heller M; Brieger J; Klein MO; Al-Nawas B; Gabriel M
    Eur Cell Mater; 2011 Apr; 21():364-72. PubMed ID: 21484706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DFT study of the adsorption of short peptides on Mg and Mg-based alloy surfaces.
    Fang Z; Wang J; Zhu S; Yang X; Jia Y; Sun Q; Guan S
    Phys Chem Chem Phys; 2018 Jan; 20(5):3602-3607. PubMed ID: 29340380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.