These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Multiphasic collagen fibre-PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study. Heymer A; Bradica G; Eulert J; Nöth U J Tissue Eng Regen Med; 2009 Jul; 3(5):389-97. PubMed ID: 19434664 [TBL] [Abstract][Full Text] [Related]
4. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Liu K; Zhou GD; Liu W; Zhang WJ; Cui L; Liu X; Liu TY; Cao Y Biomaterials; 2008 May; 29(14):2183-92. PubMed ID: 18289667 [TBL] [Abstract][Full Text] [Related]
5. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Richardson SM; Curran JM; Chen R; Vaughan-Thomas A; Hunt JA; Freemont AJ; Hoyland JA Biomaterials; 2006 Aug; 27(22):4069-78. PubMed ID: 16569429 [TBL] [Abstract][Full Text] [Related]
6. Effect of the physicochemical properties of pure or chitosan-coated poly(L-lactic acid)scaffolds on the chondrogenic differentiation of mesenchymal stem cells from osteoarthritic patients. Magalhães J; Lebourg M; Deplaine H; Gómez Ribelles JL; Blanco FJ Tissue Eng Part A; 2015 Feb; 21(3-4):716-28. PubMed ID: 25297938 [TBL] [Abstract][Full Text] [Related]
8. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
9. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. Meng F; He A; Zhang Z; Zhang Z; Lin Z; Yang Z; Long Y; Wu G; Kang Y; Liao W J Biomed Mater Res A; 2014 Aug; 102(8):2725-35. PubMed ID: 24026971 [TBL] [Abstract][Full Text] [Related]
10. Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tuli R; Nandi S; Li WJ; Tuli S; Huang X; Manner PA; Laquerriere P; Nöth U; Hall DJ; Tuan RS Tissue Eng; 2004; 10(7-8):1169-79. PubMed ID: 15363173 [TBL] [Abstract][Full Text] [Related]
11. Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration. Gomez-Sanchez C; Kowalczyk T; Ruiz De Eguino G; Lopez-Arraiza A; Infante A; Rodriguez CI; Kowalewski TA; Sarrionandia M; Aurrekoetxea J J Biomater Sci Polym Ed; 2014; 25(8):802-25. PubMed ID: 24754323 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
13. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Yang F; Murugan R; Wang S; Ramakrishna S Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263 [TBL] [Abstract][Full Text] [Related]
14. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
15. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Ciapetti G; Granchi D; Devescovi V; Baglio SR; Leonardi E; Martini D; Jurado MJ; Olalde B; Armentano I; Kenny JM; Walboomers FX; Alava JI; Baldini N Int J Mol Sci; 2012; 13(2):2439-2458. PubMed ID: 22408463 [TBL] [Abstract][Full Text] [Related]