These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19418232)

  • 1. The impact of unmeasured baseline effect modification on estimates from an inverse probability of treatment weighted logistic model.
    Delaney JA; Platt RW; Suissa S
    Eur J Epidemiol; 2009; 24(7):343-9. PubMed ID: 19418232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncollapsibility and its role in quantifying confounding bias in logistic regression.
    Schuster NA; Twisk JWR; Ter Riet G; Heymans MW; Rijnhart JJM
    BMC Med Res Methodol; 2021 Jul; 21(1):136. PubMed ID: 34225653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation study of finite-sample properties of marginal structural Cox proportional hazards models.
    Westreich D; Cole SR; Schisterman EF; Platt RW
    Stat Med; 2012 Aug; 31(19):2098-109. PubMed ID: 22492660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint modeling of concurrent binary outcomes in a longitudinal observational study using inverse probability of treatment weighting for treatment effect estimation.
    Agogo GO; Murphy TE; McAvay GJ; Allore HG
    Ann Epidemiol; 2019 Jul; 35():53-58. PubMed ID: 31085069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.
    Liu T; Hogan JW
    Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inclusion of binary proxy variables in logistic regression improves treatment effect estimation in observational studies in the presence of binary unmeasured confounding variables.
    Rosenbaum C; Yu Q; Buzhardt S; Sutton E; Chapple AG
    Pharm Stat; 2023; 22(6):995-1015. PubMed ID: 37986712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study.
    Austin PC; Grootendorst P; Anderson GM
    Stat Med; 2007 Feb; 26(4):734-53. PubMed ID: 16708349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal logistic models for non-compliance under randomized treatment with univariate binary response.
    Ten Have TR; Joffe M; Cary M
    Stat Med; 2003 Apr; 22(8):1255-83. PubMed ID: 12687654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of methods to estimate the hazard ratio under conditions of time-varying confounding and nonpositivity.
    Naimi AI; Cole SR; Westreich DJ; Richardson DB
    Epidemiology; 2011 Sep; 22(5):718-23. PubMed ID: 21747286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.
    Pfeiffer RM; Riedl R
    Stat Med; 2015 Aug; 34(18):2618-35. PubMed ID: 25781579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models.
    VanderWeele TJ; Vansteelandt S
    Am J Epidemiol; 2011 Nov; 174(10):1197-203. PubMed ID: 22058231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing inverse probability weights for continuous exposures: a comparison of methods.
    Naimi AI; Moodie EE; Auger N; Kaufman JS
    Epidemiology; 2014 Mar; 25(2):292-9. PubMed ID: 24487212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients.
    Westreich D; Greenland S
    Am J Epidemiol; 2013 Feb; 177(4):292-8. PubMed ID: 23371353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies.
    Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M
    BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the missing-indicator method and conditional logistic regression in 1:m matched case-control studies with missing exposure values.
    Li X; Song X; Gray RH
    Am J Epidemiol; 2004 Mar; 159(6):603-10. PubMed ID: 15003965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies.
    Karim ME; Petkau J; Gustafson P; Platt RW; Tremlett H;
    Stat Methods Med Res; 2018 Jun; 27(6):1709-1722. PubMed ID: 27659168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pragmatic trials: ignoring a mediator and adjusting for confounding.
    Pericleous P
    BMC Res Notes; 2019 Mar; 12(1):156. PubMed ID: 30894221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing inverse probability weights for marginal structural models.
    Cole SR; HernĂ¡n MA
    Am J Epidemiol; 2008 Sep; 168(6):656-64. PubMed ID: 18682488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.