These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19418317)

  • 1. Application of MRI and biomedical engineering in speech production study.
    Ventura SR; Freitas DR; Tavares JM
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):671-81. PubMed ID: 19418317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the automatic study of the vocal tract from magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Nov; 25(6):732-42. PubMed ID: 20952159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
    Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The magnetic resonance imaging subset of the mngu0 articulatory corpus.
    Steiner I; Richmond K; Marshall I; Gray CD
    J Acoust Soc Am; 2012 Feb; 131(2):EL106-11. PubMed ID: 22352608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualisation of hypopharyngeal cavities and vocal-tract acoustic modelling.
    Honda K; Kitamura T; Takemoto H; Adachi S; Mokhtari P; Takano S; Nota Y; Hirata H; Fujimoto I; Shimada Y; Masaki S; Fujita S; Dang J
    Comput Methods Biomech Biomed Engin; 2010 Aug; 13(4):443-53. PubMed ID: 20635261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assessment with magnetic resonance of laryngeal and oropharyngeal movements during phonation].
    Di Girolamo M; Corsetti A; Laghi A; Ferone E; Iannicelli E; Rossi M; Pavone P; Passariello R
    Radiol Med; 1996; 92(1-2):33-40. PubMed ID: 8966270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of oral articulation on the acoustic characteristics of nasalized vowels.
    Rong P; Kuehn DP
    J Acoust Soc Am; 2010 Apr; 127(4):2543-53. PubMed ID: 20370036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and analysis of nasalized vowels based on magnetic resonance imaging data.
    Pruthi T; Espy-Wilson CY; Story BH
    J Acoust Soc Am; 2007 Jun; 121(6):3858-73. PubMed ID: 17552733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of MRI to the analysis of speech production.
    Baer T; Gore JC; Boyce S; Nye PW
    Magn Reson Imaging; 1987; 5(1):1-7. PubMed ID: 3586868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images.
    Bresch E; Narayanan S
    IEEE Trans Med Imaging; 2009 Mar; 28(3):323-38. PubMed ID: 19244005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Education in acoustics and speech science using vocal-tract models.
    Arai T
    J Acoust Soc Am; 2012 Mar; 131(3):2444-54. PubMed ID: 22423792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Class III malocclusion on young male adults' vocal tract development: a pilot study.
    Xue SA; Lam CW; Whitehill TL; Samman N
    J Oral Maxillofac Surg; 2011 Mar; 69(3):845-52. PubMed ID: 20674124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.
    Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D
    J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of vocal tract shape and dimensions using magnetic resonance imaging: vowels.
    Baer T; Gore JC; Gracco LC; Nye PW
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):799-828. PubMed ID: 1939886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal tract and register changes analysed by real-time MRI in male professional singers-a pilot study.
    Echternach M; Sundberg J; Arndt S; Breyer T; Markl M; Schumacher M; Richter B
    Logoped Phoniatr Vocol; 2008; 33(2):67-73. PubMed ID: 18569645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast and flexible MRI system for the study of dynamic vocal tract shaping.
    Lingala SG; Zhu Y; Kim YC; Toutios A; Narayanan S; Nayak KS
    Magn Reson Med; 2017 Jan; 77(1):112-125. PubMed ID: 26778178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to stretch and shrink vowel systems: results from a vowel normalization procedure.
    Geng C; Mooshammer C
    J Acoust Soc Am; 2009 May; 125(5):3278-88. PubMed ID: 19425670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.