BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 19418560)

  • 1. The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in Tetrahymena thermophila.
    Sugita M; Nakano K; Sato M; Toyooka K; Numata O
    Cell Motil Cytoskeleton; 2009 Jul; 66(7):371-7. PubMed ID: 19418560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane recycling at the cytoproct of Tetrahymena.
    Allen RD; Wolf RW
    J Cell Sci; 1979 Feb; 35():217-27. PubMed ID: 106060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.
    Kopecká M; Kawamoto S; Yamaguchi M
    Microscopy (Oxf); 2013 Apr; 62(2):295-301. PubMed ID: 23155113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes.
    Moscatelli A; Idilli AI; Rodighiero S; Caccianiga M
    Plant Biol (Stuttg); 2012 Sep; 14(5):770-82. PubMed ID: 22288466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips.
    Justus CD; Anderhag P; Goins JL; Lazzaro MD
    Planta; 2004 May; 219(1):103-9. PubMed ID: 14740215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton.
    Mundy DI; Machleidt T; Ying YS; Anderson RG; Bloom GS
    J Cell Sci; 2002 Nov; 115(Pt 22):4327-39. PubMed ID: 12376564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cytoskeleton components in measles virus replication.
    Berghäll H; Wallén C; Hyypiä T; Vainionpää R
    Arch Virol; 2004 May; 149(5):891-901. PubMed ID: 15098105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule and Actin Differentially Regulate Synaptic Vesicle Cycling to Maintain High-Frequency Neurotransmission.
    Piriya Ananda Babu L; Wang HY; Eguchi K; Guillaud L; Takahashi T
    J Neurosci; 2020 Jan; 40(1):131-142. PubMed ID: 31767677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeletal scaffolds regulate riboflavin endocytosis and recycling in placental trophoblasts.
    D'Souza VM; Bareford LM; Ray A; Swaan PW
    J Nutr Biochem; 2006 Dec; 17(12):821-9. PubMed ID: 16563724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones.
    Piper M; Lee AC; van Horck FP; McNeilly H; Lu TB; Harris WA; Holt CE
    Neural Dev; 2015 Feb; 10():3. PubMed ID: 25886013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons.
    Ligon LA; Steward O
    J Comp Neurol; 2000 Nov; 427(3):351-61. PubMed ID: 11054698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae.
    Damm EM; Pelkmans L; Kartenbeck J; Mezzacasa A; Kurzchalia T; Helenius A
    J Cell Biol; 2005 Jan; 168(3):477-88. PubMed ID: 15668298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii.
    Shaw MK; Compton HL; Roos DS; Tilney LG
    J Cell Sci; 2000 Apr; 113 ( Pt 7)():1241-54. PubMed ID: 10704375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos.
    Rivera RM; Kelley KL; Erdos GW; Hansen PJ
    Biol Reprod; 2004 Jun; 70(6):1852-62. PubMed ID: 14960486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counterregulation of clathrin-mediated endocytosis by the actin and microtubular cytoskeleton in human neutrophils.
    Uriarte SM; Jog NR; Luerman GC; Bhimani S; Ward RA; McLeish KR
    Am J Physiol Cell Physiol; 2009 Apr; 296(4):C857-67. PubMed ID: 19176760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both microtubules and actin filaments are required for efficient postendocytotic traffic of the polymeric immunoglobulin receptor in polarized Madin-Darby canine kidney cells.
    Maples CJ; Ruiz WG; Apodaca G
    J Biol Chem; 1997 Mar; 272(10):6741-51. PubMed ID: 9045707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubules and actin microfilaments in the amphibian bladder granular cells.
    Hugon JS; Ibarra C; Valenti G; Bourguet J
    Biol Cell; 1989; 66(1-2):77-84. PubMed ID: 2804461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells.
    Zegers MM; Zaal KJ; van IJzendoorn SC; Klappe K; Hoekstra D
    Mol Biol Cell; 1998 Jul; 9(7):1939-49. PubMed ID: 9658181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.