These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 19419177)
1. Contact angles of nanodrops on chemically rough surfaces. Berim GO; Ruckenstein E Langmuir; 2009 Aug; 25(16):9285-9. PubMed ID: 19419177 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Microscopic description of a drop on a solid surface. Ruckenstein E; Berim GO Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270 [TBL] [Abstract][Full Text] [Related]
4. Nanodrop on a nanorough solid surface: density functional theory considerations. Berim GO; Ruckenstein E J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497 [TBL] [Abstract][Full Text] [Related]
5. Microscopic calculation of the sticking force for nanodrops on an inclined surface. Berim GO; Ruckenstein E J Chem Phys; 2008 Sep; 129(11):114709. PubMed ID: 19044982 [TBL] [Abstract][Full Text] [Related]
6. Contact-angle hysteresis on super-hydrophobic surfaces. McHale G; Shirtcliffe NJ; Newton MI Langmuir; 2004 Nov; 20(23):10146-9. PubMed ID: 15518506 [TBL] [Abstract][Full Text] [Related]
7. Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate. Krasovitski B; Marmur A Langmuir; 2005 Apr; 21(9):3881-5. PubMed ID: 15835950 [TBL] [Abstract][Full Text] [Related]
9. Nanodroplets on a planar solid surface: temperature, pressure, and size dependence of their density and contact angles. Berim GO; Ruckenstein E Langmuir; 2006 Jan; 22(3):1063-73. PubMed ID: 16430266 [TBL] [Abstract][Full Text] [Related]
12. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Kusumaatmaja H; Yeomans JM Langmuir; 2007 May; 23(11):6019-32. PubMed ID: 17451253 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface. Zhao Y; Lu Q; Li M; Li X Langmuir; 2007 May; 23(11):6212-7. PubMed ID: 17465584 [TBL] [Abstract][Full Text] [Related]
14. Liquid drops on vertical and inclined surfaces; I. An experimental study of drop geometry. ElSherbini AI; Jacobi AM J Colloid Interface Sci; 2004 May; 273(2):556-65. PubMed ID: 15082394 [TBL] [Abstract][Full Text] [Related]
15. Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity. Extrand CW; Moon SI Langmuir; 2010 Nov; 26(22):17090-9. PubMed ID: 20964303 [TBL] [Abstract][Full Text] [Related]
16. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F; Monson PA Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079 [TBL] [Abstract][Full Text] [Related]
17. Nanodrop on a smooth solid surface with hidden roughness. Density functional theory considerations. Berim GO; Ruckenstein E Nanoscale; 2015 May; 7(17):7873-84. PubMed ID: 25855034 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic modeling of contact angles on rough, heterogeneous surfaces. Long J; Hyder MN; Huang RY; Chen P Adv Colloid Interface Sci; 2005 Dec; 118(1-3):173-90. PubMed ID: 16154106 [TBL] [Abstract][Full Text] [Related]
19. Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces. Iwamatsu M J Colloid Interface Sci; 2006 May; 297(2):772-7. PubMed ID: 16337219 [TBL] [Abstract][Full Text] [Related]
20. How Wenzel and cassie were wrong. Gao L; McCarthy TJ Langmuir; 2007 Mar; 23(7):3762-5. PubMed ID: 17315893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]