BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19419180)

  • 1. Gold removal from germanium nanowires.
    Ratchford JB; Goldthorpe IA; Sun Y; McIntyre PC; Pianetta PA; Chidsey CE
    Langmuir; 2009 Aug; 25(16):9473-9. PubMed ID: 19419180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts.
    Sierra-Sastre Y; Dayeh SA; Picraux ST; Batt CA
    ACS Nano; 2010 Feb; 4(2):1209-17. PubMed ID: 20128609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface chemistry and electrical properties of germanium nanowires.
    Wang D; Chang YL; Wang Q; Cao J; Farmer DB; Gordon RG; Dai H
    J Am Chem Soc; 2004 Sep; 126(37):11602-11. PubMed ID: 15366907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterostructures of germanium nanowires and germanium-silicon oxide nanotubes and growth mechanisms.
    Huang JQ; Chiam SY; Chim WK; Wong LM; Wang SJ
    Nanotechnology; 2009 Oct; 20(42):425604. PubMed ID: 19779235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation resistant germanium nanowires: bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly.
    Wang D; Chang YL; Liu Z; Dai H
    J Am Chem Soc; 2005 Aug; 127(33):11871-5. PubMed ID: 16104766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water induced electrical hysteresis in germanium nanowires: a theoretical study.
    Sk MA; Ng MF; Yang SW; Lim KH
    Phys Chem Chem Phys; 2011 Jun; 13(24):11663-70. PubMed ID: 21597612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Group IV Nanowires on Graphene: The Case of Ge Nanocrawlers.
    Mataev E; Rastogi SK; Madhusudan A; Bone J; Lamprinakos N; Picard Y; Cohen-Karni T
    Nano Lett; 2016 Aug; 16(8):5267-72. PubMed ID: 27400248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires.
    Fukata N; Sato K; Mitome M; Bando Y; Sekiguchi T; Kirkham M; Hong JI; Wang ZL; Snyder RL
    ACS Nano; 2010 Jul; 4(7):3807-16. PubMed ID: 20565120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires.
    Zardo I; Yu L; Conesa-Boj S; Estradé S; Alet PJ; Rössler J; Frimmer M; Roca I Cabarrocas P; Peiró F; Arbiol J; Morante JR; Fontcuberta I Morral A
    Nanotechnology; 2009 Apr; 20(15):155602. PubMed ID: 19420550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical vapor deposition of one-dimensional nanoparticle arrays on graphite: seeding the electrodeposition of gold nanowires.
    Cross CE; Hemminger JC; Penner RM
    Langmuir; 2007 Sep; 23(20):10372-9. PubMed ID: 17715955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Block copolymer mediated deposition of metal nanoparticles on germanium nanowires.
    Zhang J; Gao Y; Hanrath T; Korgel BA; Buriak JM
    Chem Commun (Camb); 2007 Apr; (14):1438-40. PubMed ID: 17389985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-template-assisted growth of gold nanowires using a novel flow-stream technique.
    Metwalli E; Moulin JF; Perlich J; Wang W; Diethert A; Roth SV; Müller-Buschbaum P
    Langmuir; 2009 Oct; 25(19):11815-21. PubMed ID: 19572494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles.
    Cho WS; Kim S; Han BS; Son WC; Jeong J
    Toxicol Lett; 2009 Dec; 191(1):96-102. PubMed ID: 19695318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires.
    Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L
    J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change.
    Yu CJ; Cheng TL; Tseng WL
    Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress induced half-metallicity in surface defected germanium nanowires.
    Sk MA; Ng MF; Yang SW; Lim KH
    Phys Chem Chem Phys; 2012 Jan; 14(3):1166-74. PubMed ID: 22127329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating the electronic properties of germanium nanowires via applied strain and surface passivation.
    Sk MA; Ng MF; Huang L; Lim KH
    Phys Chem Chem Phys; 2013 Apr; 15(16):5927-35. PubMed ID: 23493789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.