BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19419236)

  • 1. Data mining in pharmacovigilance--detecting the unexpected: the role of index of suspicion of the reporter.
    Sundström A; Hallberg P
    Drug Saf; 2009; 32(5):419-27. PubMed ID: 19419236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Borrowing external information to improve Bayesian confidence propagation neural network.
    Tada K; Maruo K; Isogawa N; Yamaguchi Y; Gosho M
    Eur J Clin Pharmacol; 2020 Sep; 76(9):1311-1319. PubMed ID: 32488331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of completeness of suspected adverse drug reaction reports submitted to the mexican national pharmacovigilance centre: a cross-sectional period-prevalence study.
    Sánchez-Sánchez B; Altagracia-Martínez M; Kravzov-Jinich J; Moreno-Bonett C; Vázquez-Moreno E; Martínez-Núñez JM
    Drug Saf; 2012 Oct; 35(10):837-44. PubMed ID: 22924896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the safety profile of biologicals: a disproportionality analysis using the WHO adverse drug reaction database, VigiBase.
    Giezen TJ; Mantel-Teeuwisse AK; Meyboom RH; Straus SM; Leufkens HG; Egberts TC
    Drug Saf; 2010 Oct; 33(10):865-78. PubMed ID: 20812771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of a changed legislation on reporting of adverse drug reactions in Sweden, with focus on nurses' reporting.
    Karlsson SA; Jacobsson I; Boman MD; Hakkarainen KM; Lövborg H; Hägg S; Jönsson AK
    Eur J Clin Pharmacol; 2015 May; 71(5):631-6. PubMed ID: 25845655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adverse drug reaction or innocent bystander? A systematic comparison of statistical discovery methods for spontaneous reporting systems.
    Dijkstra L; Garling M; Foraita R; Pigeot I
    Pharmacoepidemiol Drug Saf; 2020 Apr; 29(4):396-403. PubMed ID: 32092786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Criteria revision and performance comparison of three methods of signal detection applied to the spontaneous reporting database of a pharmaceutical manufacturer.
    Matsushita Y; Kuroda Y; Niwa S; Sonehara S; Hamada C; Yoshimura I
    Drug Saf; 2007; 30(8):715-26. PubMed ID: 17696584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-mining analyses of pharmacovigilance signals in relation to relevant comparison drugs.
    Bate A; Lindquist M; Orre R; Edwards IR; Meyboom RH
    Eur J Clin Pharmacol; 2002 Oct; 58(7):483-90. PubMed ID: 12389072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A real-world pharmacovigilance study of axitinib: data mining of the public version of FDA adverse event reporting system.
    Shu Y; Ding Y; Dai B; Zhang Q
    Expert Opin Drug Saf; 2022 Apr; 21(4):563-572. PubMed ID: 34918584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying quantitative methods for detecting new drug safety signals in pharmacovigilance national database.
    Shalviri G; Mohammad K; Majdzadeh R; Gholami K
    Pharmacoepidemiol Drug Saf; 2007 Oct; 16(10):1136-40. PubMed ID: 17705214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of patient reporting of adverse drug reactions to the UK 'Yellow Card Scheme': literature review, descriptive and qualitative analyses, and questionnaire surveys.
    Avery AJ; Anderson C; Bond CM; Fortnum H; Gifford A; Hannaford PC; Hazell L; Krska J; Lee AJ; McLernon DJ; Murphy E; Shakir S; Watson MC
    Health Technol Assess; 2011 May; 15(20):1-234, iii-iv. PubMed ID: 21545758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity Spectrum of Anti-GD2 Immunotherapy: A Real-World Study Leveraging the US Food and Drug Administration Adverse Event Reporting System.
    Wang G; Wang J; Du R; Wang Y; Li Z
    Paediatr Drugs; 2024 Mar; 26(2):175-185. PubMed ID: 38153627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical and graphical approaches for disproportionality analysis of spontaneously-reported adverse events in pharmacovigilance.
    Zink RC; Huang Q; Zhang LY; Bao WJ
    Chin J Nat Med; 2013 May; 11(3):314-20. PubMed ID: 23725848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient versus healthcare professional spontaneous adverse drug reaction reporting: a systematic review.
    Inch J; Watson MC; Anakwe-Umeh S
    Drug Saf; 2012 Oct; 35(10):807-18. PubMed ID: 22928729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian confidence propagation neural network.
    Bate A
    Drug Saf; 2007; 30(7):623-5. PubMed ID: 17604417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands.
    Scholl JH; van Puijenbroek EP
    Pharmacoepidemiol Drug Saf; 2016 Dec; 25(12):1361-1367. PubMed ID: 27686554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database.
    Szarfman A; Machado SG; O'Neill RT
    Drug Saf; 2002; 25(6):381-92. PubMed ID: 12071774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consumer reporting of adverse drug reactions: a retrospective analysis of the Danish adverse drug reaction database from 2004 to 2006.
    Aagaard L; Nielsen LH; Hansen EH
    Drug Saf; 2009; 32(11):1067-74. PubMed ID: 19810778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.