These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19419727)

  • 1. Altering efficiency of hydrophobic interaction chromatography by combined salt and temperature effects.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Dec; 1216(50):8712-21. PubMed ID: 19419727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the sample-solvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography.
    Muca R; Marek W; Piatkowski W; Antos D
    J Chromatogr A; 2010 Apr; 1217(17):2812-20. PubMed ID: 20236645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of thermal heterogeneity in hydrophobic interaction chromatography.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Sep; 1216(39):6716-27. PubMed ID: 19698947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention.
    Xiao Y; Freed AS; Jones TT; Makrodimitris K; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2006 Apr; 93(6):1177-89. PubMed ID: 16444741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin I retention behavior on Butyl-Sepharose under linear loading chromatographic conditions.
    Nunes CA; Dias-Cabral AC
    J Chromatogr A; 2009 Mar; 1216(12):2332-8. PubMed ID: 19168184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic interaction chromatography of proteins IV. Kinetics of protein spreading.
    Haimer E; Tscheliessnig A; Hahn R; Jungbauer A
    J Chromatogr A; 2007 Jan; 1139(1):84-94. PubMed ID: 17116304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic interaction chromatography of proteins V. Quantitative assessment of conformational changes.
    Ueberbacher R; Haimer E; Hahn R; Jungbauer A
    J Chromatogr A; 2008 Jul; 1198-1199():154-63. PubMed ID: 18541249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution.
    To BC; Lenhoff AM
    J Chromatogr A; 2008 Sep; 1205(1-2):46-59. PubMed ID: 18718599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography.
    Zhao G; Peng G; Li F; Shi Q; Sun Y
    J Chromatogr A; 2008 Nov; 1211(1-2):90-8. PubMed ID: 18947830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-injection technique for isolating a target protein from multicomponent mixtures.
    Marek W; Piątkowski W; Antos D
    J Chromatogr A; 2011 Aug; 1218(32):5423-33. PubMed ID: 21396649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein adsorption isotherm behavior in hydrophobic interaction chromatography.
    Chen J; Cramer SM
    J Chromatogr A; 2007 Sep; 1165(1-2):67-77. PubMed ID: 17698076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.
    Nelson DM; Marcus RK
    Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein retention in hydrophobic interaction chromatography.
    Mahn A; Asenjo JA
    Biotechnol Adv; 2005 Jul; 23(5):359-68. PubMed ID: 15894452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves.
    Creasy A; Lomino J; Barker G; Khetan A; Carta G
    J Chromatogr A; 2018 Apr; 1547():53-61. PubMed ID: 29551240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions.
    Müller TK; Franzreb M
    J Chromatogr A; 2012 Oct; 1260():88-96. PubMed ID: 22954746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography.
    Xiao Y; Rathore A; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2007 Jul; 1157(1-2):197-206. PubMed ID: 17524412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of protein adsorption and recovery at low salt conditions in hydrophobic interaction chromatographic systems.
    Chen J; Luo Q; Breneman CM; Cramer SM
    J Chromatogr A; 2007 Jan; 1139(2):236-46. PubMed ID: 17126350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear gradient isotherm parameter estimation for proteins with consideration of salt competition and multiple forms.
    Whitley RD; Berninger JA; Rouhana N; Wang NH
    Biotechnol Prog; 1991; 7(6):544-53. PubMed ID: 1367754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems.
    Chen J; Yang T; Cramer SM
    J Chromatogr A; 2008 Jan; 1177(2):207-14. PubMed ID: 18048048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic interaction chromatography of proteins. II. Solution thermodynamic properties as a determinant of retention.
    To BC; Lenhoff AM
    J Chromatogr A; 2007 Feb; 1141(2):235-43. PubMed ID: 17207494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.