These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19419731)

  • 1. Influence of the nature of the metal hydroxide in the porosity development of carbon nanofibers.
    Jiménez V; Sánchez P; de Lucas A; Valverde JL; Romero A
    J Colloid Interface Sci; 2009 Aug; 336(1):226-34. PubMed ID: 19419731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers.
    Jiménez V; Sánchez P; Valverde JL; Romero A
    J Colloid Interface Sci; 2009 Aug; 336(2):712-22. PubMed ID: 19410256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on pore-opening behaviors of graphite nanofibers by a chemical activation process.
    Kim BJ; Lee YS; Park SJ
    J Colloid Interface Sci; 2007 Feb; 306(2):454-8. PubMed ID: 17125783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption.
    Im JS; Park SJ; Kim TJ; Kim YH; Lee YS
    J Colloid Interface Sci; 2008 Feb; 318(1):42-9. PubMed ID: 17988675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation.
    Okada K; Yamamoto N; Kameshima Y; Yasumori A
    J Colloid Interface Sci; 2003 Jun; 262(1):179-93. PubMed ID: 16256594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of porosity in carbons from yeast grains by activation with alkali metal carbonates.
    Urabe Y; Ishikura T; Kaneko K
    J Colloid Interface Sci; 2008 Mar; 319(1):381-3. PubMed ID: 18068716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.
    Meng LY; Park SJ
    J Colloid Interface Sci; 2010 Dec; 352(2):498-503. PubMed ID: 20851404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2 capture in different carbon materials.
    Jiménez V; Ramírez-Lucas A; Díaz JA; Sánchez P; Romero A
    Environ Sci Technol; 2012 Jul; 46(13):7407-14. PubMed ID: 22679919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High surface area materials prepared from sewage sludge-based precursors.
    Ros A; Lillo-Ródenas MA; Fuente E; Montes-Morán MA; Martín MJ; Linares-Solano A
    Chemosphere; 2006 Sep; 65(1):132-40. PubMed ID: 16564562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks.
    Zhang F; Ma H; Chen J; Li GD; Zhang Y; Chen JS
    Bioresour Technol; 2008 Jul; 99(11):4803-8. PubMed ID: 17967533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of toluene on carbon nanofibers prepared by electrospinning.
    Oh GY; Ju YW; Kim MY; Jung HR; Kim HJ; Lee WJ
    Sci Total Environ; 2008 Apr; 393(2-3):341-7. PubMed ID: 18262599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of filamentous carbon from the surface of Ni/SiO2 doped with alkali metal bromides.
    Park C; Keane MA
    J Colloid Interface Sci; 2002 Jun; 250(1):37-48. PubMed ID: 16290632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent.
    Wu Z; Webley PA; Zhao D
    Langmuir; 2010 Jun; 26(12):10277-86. PubMed ID: 20392120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J
    Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study.
    Rokhina EV; Lahtinen M; Makarova K; Jegatheesan V; Virkutyte J
    Bioresour Technol; 2012 Jun; 113():127-31. PubMed ID: 22209137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of calcium carbonate-polyethylene oxide hybrid nanofibers through in-situ electrospinning.
    Faridi-Majidi R; Sharifi-Sanjani N; Madani M
    J Nanosci Nanotechnol; 2008 May; 8(5):2627-31. PubMed ID: 18572696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of alkali metals in silica gel nanopores: new materials for chemical reductions and hydrogen production.
    Shatnawi M; Paglia G; Dye JL; Cram KC; Lefenfeld M; Billinge SJ
    J Am Chem Soc; 2007 Feb; 129(5):1386-92. PubMed ID: 17263423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot procedure to synthesize high surface area alumina nanofibers using supercritical carbon dioxide.
    Chowdhury MB; Sui R; Lucky RA; Charpentier PA
    Langmuir; 2010 Feb; 26(4):2707-13. PubMed ID: 20141211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials.
    Yang Z; Xia Y; Mokaya R
    J Am Chem Soc; 2007 Feb; 129(6):1673-9. PubMed ID: 17243684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping.
    Yang Z; Xia Y; Sun X; Mokaya R
    J Phys Chem B; 2006 Sep; 110(37):18424-31. PubMed ID: 16970467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.