BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19419872)

  • 41. Adaptation of the Basso-Beattie-Bresnahan locomotor rating scale for use in a clinical model of spinal cord injury in dogs.
    Song RB; Basso DM; da Costa RC; Fisher LC; Mo X; Moore SA
    J Neurosci Methods; 2016 Aug; 268():117-24. PubMed ID: 27155106
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunomodulation of acute experimental spinal cord injury with human immunoglobulin G.
    Gok B; Sciubba DM; Okutan O; Beskonakli E; Palaoglu S; Erdamar H; Sargon MF
    J Clin Neurosci; 2009 Apr; 16(4):549-53. PubMed ID: 19200733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of a mouse locomotor rating system to evaluate compression-induced spinal cord injury: correlation of locomotor and morphological injury indices.
    Li Y; Oskouian RJ; Day YJ; Kern JA; Linden J
    J Neurosurg Spine; 2006 Feb; 4(2):165-73. PubMed ID: 16506485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional and electrophysiological characterization of photochemical graded spinal cord injury in the rat.
    García-Alías G; Verdú E; Forés J; López-Vales R; Navarro X
    J Neurotrauma; 2003 May; 20(5):501-10. PubMed ID: 12803981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional restoration of rabbit spinal cord using collagen-filament scaffold.
    Yoshii S; Ito S; Shima M; Taniguchi A; Akagi M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):19-25. PubMed ID: 19012267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new measure of hindlimb stepping ability in neonatally spinalized rats.
    Hillyer JE; Joynes RL
    Behav Brain Res; 2009 Sep; 202(2):291-302. PubMed ID: 19376160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spinal cord contusion in the rat: somatosensory evoked potentials as a function of graded injury.
    Raines A; Dretchen KL; Marx K; Wrathall JR
    J Neurotrauma; 1988; 5(2):151-60. PubMed ID: 3225858
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery.
    Hsu B; Cree AK; Lagopoulos J; Cummine JL
    Spine (Phila Pa 1976); 2008 May; 33(10):1100-6. PubMed ID: 18449044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Peripheral nerve grafts in a spinal cord prosthesis result in regeneration and motor evoked potentials following spinal cord resection.
    Nordblom J; Persson JK; Svensson M; Mattsson P
    Restor Neurol Neurosci; 2009; 27(4):285-95. PubMed ID: 19738322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recovery of bipedal locomotion in bonnet macaques after spinal cord injury: footprint analysis.
    Babu RS; Namasivayam A
    Synapse; 2008 Jun; 62(6):432-47. PubMed ID: 18361440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment.
    Marques SA; Garcez VF; Del Bel EA; Martinez AM
    J Neurosci Methods; 2009 Feb; 177(1):183-93. PubMed ID: 19013194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study.
    Basso DM; Beattie MS; Bresnahan JC; Anderson DK; Faden AI; Gruner JA; Holford TR; Hsu CY; Noble LJ; Nockels R; Perot PL; Salzman SK; Young W
    J Neurotrauma; 1996 Jul; 13(7):343-59. PubMed ID: 8863191
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury.
    Abrams MB; Dominguez C; Pernold K; Reger R; Wiesenfeld-Hallin Z; Olson L; Prockop D
    Restor Neurol Neurosci; 2009; 27(4):307-21. PubMed ID: 19738324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptive signal enhancement of somatosensory evoked potential for spinal cord compression detection: an experimental study.
    Hu Y; Lam BS; Chang CQ; Chan FH; Lu WW; Luk KD
    Comput Biol Med; 2005 Nov; 35(9):814-28. PubMed ID: 16278110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of directly applied hypothermia in spinal cord injury.
    Dimar JR; Shields CB; Zhang YP; Burke DA; Raque GH; Glassman SD
    Spine (Phila Pa 1976); 2000 Sep; 25(18):2294-302. PubMed ID: 10984780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel Modeling of Somatosensory Evoked Potentials for the Assessment of Spinal Cord Injury.
    Mir H; Al-Nashash H; Kortelainen J; All A
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):511-520. PubMed ID: 28475042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Early application of pedicled omentum to the acutely traumatised spinal cord.
    Goldsmith HS; Steward E; Duckett S
    Paraplegia; 1985 Apr; 23(2):100-12. PubMed ID: 4000690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats.
    Li X; Yang Z; Zhang A; Wang T; Chen W
    Biomaterials; 2009 Feb; 30(6):1121-32. PubMed ID: 19042014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord in vitro.
    Margaryan G; Mladinic M; Mattioli C; Nistri A
    Neuroscience; 2009 Oct; 163(2):669-82. PubMed ID: 19591902
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Area Under the Curve of Somatosensory Evoked Potentials Detects Spinal Cord Injury.
    Jorge A; Zhou J; Dixon EC; Hamilton KD; Balzer J; Thirumala P
    J Clin Neurophysiol; 2019 Mar; 36(2):155-160. PubMed ID: 30694945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.