These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 19419955)
1. Acetylation of KLF5 alters the assembly of p15 transcription factors in transforming growth factor-beta-mediated induction in epithelial cells. Guo P; Zhao KW; Dong XY; Sun X; Dong JT J Biol Chem; 2009 Jul; 284(27):18184-93. PubMed ID: 19419955 [TBL] [Abstract][Full Text] [Related]
2. Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification. Guo P; Dong XY; Zhang X; Zhao KW; Sun X; Li Q; Dong JT J Biol Chem; 2009 Mar; 284(10):6071-8. PubMed ID: 19056724 [TBL] [Abstract][Full Text] [Related]
3. Ras inhibits TGF-β-induced KLF5 acetylation and transcriptional complex assembly via regulating SMAD2/3 phosphorylation in epithelial cells. Guo P; Xing C; Fu X; He D; Dong JT J Cell Biochem; 2020 Mar; 121(3):2197-2208. PubMed ID: 31724223 [TBL] [Abstract][Full Text] [Related]
4. Opposing effects of KLF5 on the transcription of MYC in epithelial proliferation in the context of transforming growth factor beta. Guo P; Dong XY; Zhao K; Sun X; Li Q; Dong JT J Biol Chem; 2009 Oct; 284(41):28243-28252. PubMed ID: 19684017 [TBL] [Abstract][Full Text] [Related]
5. The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. Simonsson M; Kanduri M; Grönroos E; Heldin CH; Ericsson J J Biol Chem; 2006 Dec; 281(52):39870-80. PubMed ID: 17074756 [TBL] [Abstract][Full Text] [Related]
6. Acetylation of Smad2 by the co-activator p300 regulates activin and transforming growth factor beta response. Tu AW; Luo K J Biol Chem; 2007 Jul; 282(29):21187-96. PubMed ID: 17478422 [TBL] [Abstract][Full Text] [Related]
7. The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner. Nye MD; Almada LL; Fernandez-Barrena MG; Marks DL; Elsawa SF; Vrabel A; Tolosa EJ; Ellenrieder V; Fernandez-Zapico ME J Biol Chem; 2014 May; 289(22):15495-506. PubMed ID: 24739390 [TBL] [Abstract][Full Text] [Related]
8. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Seoane J; Pouponnot C; Staller P; Schader M; Eilers M; Massagué J Nat Cell Biol; 2001 Apr; 3(4):400-8. PubMed ID: 11283614 [TBL] [Abstract][Full Text] [Related]
9. Interruption of KLF5 acetylation converts its function from tumor suppressor to tumor promoter in prostate cancer cells. Li X; Zhang B; Wu Q; Ci X; Zhao R; Zhang Z; Xia S; Su D; Chen J; Ma G; Fu L; Dong JT Int J Cancer; 2015 Feb; 136(3):536-46. PubMed ID: 24931571 [TBL] [Abstract][Full Text] [Related]
10. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. Feng XH; Lin X; Derynck R EMBO J; 2000 Oct; 19(19):5178-93. PubMed ID: 11013220 [TBL] [Abstract][Full Text] [Related]
11. A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Smith AP; Verrecchia A; Fagà G; Doni M; Perna D; Martinato F; Guccione E; Amati B Oncogene; 2009 Jan; 28(3):422-30. PubMed ID: 18978814 [TBL] [Abstract][Full Text] [Related]
13. Requirement of Ras/MAPK pathway activation by transforming growth factor beta for transforming growth factor beta 1 production in a Smad-dependent pathway. Yue J; Mulder KM J Biol Chem; 2000 Oct; 275(40):30765-73. PubMed ID: 10843986 [TBL] [Abstract][Full Text] [Related]
14. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Poncelet AC; de Caestecker MP; Schnaper HW Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488 [TBL] [Abstract][Full Text] [Related]
15. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. He W; Dorn DC; Erdjument-Bromage H; Tempst P; Moore MA; Massagué J Cell; 2006 Jun; 125(5):929-41. PubMed ID: 16751102 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Chou WC; Prokova V; Shiraishi K; Valcourt U; Moustakas A; Hadzopoulou-Cladaras M; Zannis VI; Kardassis D Mol Biol Cell; 2003 Mar; 14(3):1279-94. PubMed ID: 12631740 [TBL] [Abstract][Full Text] [Related]
17. Differential regulation of transforming growth factor beta signaling pathways by Notch in human endothelial cells. Fu Y; Chang A; Chang L; Niessen K; Eapen S; Setiadi A; Karsan A J Biol Chem; 2009 Jul; 284(29):19452-62. PubMed ID: 19473993 [TBL] [Abstract][Full Text] [Related]
18. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300. Mori N; Morishita M; Tsukazaki T; Giam CZ; Kumatori A; Tanaka Y; Yamamoto N Blood; 2001 Apr; 97(7):2137-44. PubMed ID: 11264182 [TBL] [Abstract][Full Text] [Related]
19. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Labbé E; Letamendia A; Attisano L Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8358-63. PubMed ID: 10890911 [TBL] [Abstract][Full Text] [Related]
20. Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation. Stroschein SL; Wang W; Luo K J Biol Chem; 1999 Apr; 274(14):9431-41. PubMed ID: 10092624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]