BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 19419994)

  • 1. AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR.
    King JD; Fitch AC; Lee JK; McCane JE; Mak DO; Foskett JK; Hallows KR
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C94-101. PubMed ID: 19419994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase.
    King JD; Lee J; Riemen CE; Neumann D; Xiong S; Foskett JK; Mehta A; Muimo R; Hallows KR
    J Biol Chem; 2012 Sep; 287(40):33389-400. PubMed ID: 22869372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR.
    Button B; Reuss L; Altenberg GA
    J Gen Physiol; 2001 May; 117(5):457-68. PubMed ID: 11331356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells.
    Hallows KR; McCane JE; Kemp BE; Witters LA; Foskett JK
    J Biol Chem; 2003 Jan; 278(2):998-1004. PubMed ID: 12427743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA.
    Chappe V; Hinkson DA; Zhu T; Chang XB; Riordan JR; Hanrahan JW
    J Physiol; 2003 Apr; 548(Pt 1):39-52. PubMed ID: 12588899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR).
    Billet A; Luo Y; Balghi H; Hanrahan JW
    J Biol Chem; 2013 Jul; 288(30):21815-23. PubMed ID: 23760269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2.
    Chen Y; Button B; Altenberg GA; Reuss L
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1436-44. PubMed ID: 15282191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides.
    Mihályi C; Iordanov I; Töröcsik B; Csanády L
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21740-21746. PubMed ID: 32817533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A.
    Jia Y; Mathews CJ; Hanrahan JW
    J Biol Chem; 1997 Feb; 272(8):4978-84. PubMed ID: 9030559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural models of CFTR-AMPK and CFTR-PKA interactions: R-domain flexibility is a key factor in CFTR regulation.
    Siwiak M; Edelman A; Zielenkiewicz P
    J Mol Model; 2012 Jan; 18(1):83-90. PubMed ID: 21455600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMP-activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4-2.
    Bhalla V; Oyster NM; Fitch AC; Wijngaarden MA; Neumann D; Schlattner U; Pearce D; Hallows KR
    J Biol Chem; 2006 Sep; 281(36):26159-69. PubMed ID: 16844684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains.
    Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain.
    Chen JH
    J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of activation of Xenopus CFTR by stimulation of PKC.
    Chen Y; Altenberg GA; Reuss L
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1256-63. PubMed ID: 15229107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual regulation of cardiac Na+-K+ pumps and CFTR Cl- channels by protein kinases A and C.
    Erlenkamp S; Glitsch HG; Kockskämper J
    Pflugers Arch; 2002 May; 444(1-2):251-62. PubMed ID: 11976939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insight into control of CFTR by AMPK.
    Kongsuphol P; Cassidy D; Hieke B; Treharne KJ; Schreiber R; Mehta A; Kunzelmann K
    J Biol Chem; 2009 Feb; 284(9):5645-53. PubMed ID: 19095655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase.
    Hallows KR; Raghuram V; Kemp BE; Witters LA; Foskett JK
    J Clin Invest; 2000 Jun; 105(12):1711-21. PubMed ID: 10862786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
    Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.