BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19420220)

  • 1. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair.
    Kadyrov FA; Genschel J; Fang Y; Penland E; Edelmann W; Modrich P
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8495-500. PubMed ID: 19420220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolytic function of Exo1 in mammalian mismatch repair.
    Shao H; Baitinger C; Soderblom EJ; Burdett V; Modrich P
    Nucleic Acids Res; 2014 Jun; 42(11):7104-12. PubMed ID: 24829455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes.
    Schaetzlein S; Chahwan R; Avdievich E; Roa S; Wei K; Eoff RL; Sellers RS; Clark AB; Kunkel TA; Scharff MD; Edelmann W
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):E2470-9. PubMed ID: 23754438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rad27 and Exo1 function in different excision pathways for mismatch repair in Saccharomyces cerevisiae.
    Calil FA; Li BZ; Torres KA; Nguyen K; Bowen N; Putnam CD; Kolodner RD
    Nat Commun; 2021 Sep; 12(1):5568. PubMed ID: 34552065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exo1 independent DNA mismatch repair involves multiple compensatory nucleases.
    Desai A; Gerson S
    DNA Repair (Amst); 2014 Sep; 21():55-64. PubMed ID: 25037770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility.
    Wei K; Clark AB; Wong E; Kane MF; Mazur DJ; Parris T; Kolas NK; Russell R; Hou H; Kneitz B; Yang G; Kunkel TA; Kolodner RD; Cohen PE; Edelmann W
    Genes Dev; 2003 Mar; 17(5):603-14. PubMed ID: 12629043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MutLγ promotes repeat expansion in a Fragile X mouse model while EXO1 is protective.
    Zhao X; Zhang Y; Wilkins K; Edelmann W; Usdin K
    PLoS Genet; 2018 Oct; 14(10):e1007719. PubMed ID: 30312299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nuclease activity of DNA2 promotes exonuclease 1-independent mismatch repair.
    Kadyrova LY; Dahal BK; Gujar V; Daley JM; Sung P; Kadyrov FA
    J Biol Chem; 2022 Apr; 298(4):101831. PubMed ID: 35300981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of
    Bowen N; Kolodner RD
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3607-3612. PubMed ID: 28265089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair.
    Kratz K; Artola-Borán M; Kobayashi-Era S; Koh G; Oliveira G; Kobayashi S; Oliveira A; Zou X; Richter J; Tsuda M; Sasanuma H; Takeda S; Loizou JI; Sartori AA; Nik-Zainal S; Jiricny J
    Mol Cell Biol; 2021 Aug; 41(9):e0030321. PubMed ID: 34228493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exonuclease 1-dependent and independent mismatch repair.
    Goellner EM; Putnam CD; Kolodner RD
    DNA Repair (Amst); 2015 Aug; 32():24-32. PubMed ID: 25956862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human mismatch repair: reconstitution of a nick-directed bidirectional reaction.
    Constantin N; Dzantiev L; Kadyrov FA; Modrich P
    J Biol Chem; 2005 Dec; 280(48):39752-61. PubMed ID: 16188885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exo1 phosphorylation status controls the hydroxyurea sensitivity of cells lacking the Pol32 subunit of DNA polymerases delta and zeta.
    Doerfler L; Schmidt KH
    DNA Repair (Amst); 2014 Dec; 24():26-36. PubMed ID: 25457771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Exo1-Msh2 interaction motifs in DNA mismatch repair and new Msh2-binding partners.
    Goellner EM; Putnam CD; Graham WJ; Rahal CM; Li BZ; Kolodner RD
    Nat Struct Mol Biol; 2018 Aug; 25(8):650-659. PubMed ID: 30061603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional excision in methyl-directed mismatch repair.
    Grilley M; Griffith J; Modrich P
    J Biol Chem; 1993 Jun; 268(16):11830-7. PubMed ID: 8505311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endonucleolytic function of MutLalpha in human mismatch repair.
    Kadyrov FA; Dzantiev L; Constantin N; Modrich P
    Cell; 2006 Jul; 126(2):297-308. PubMed ID: 16873062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.
    Smith CE; Bowen N; Graham WJ; Goellner EM; Srivatsan A; Kolodner RD
    J Biol Chem; 2015 Aug; 290(35):21580-90. PubMed ID: 26170454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exonuclease 1 and its versatile roles in DNA repair.
    Keijzers G; Liu D; Rasmussen LJ
    Crit Rev Biochem Mol Biol; 2016; 51(6):440-451. PubMed ID: 27494243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mismatch repair endonuclease MutLα tethers duplex regions of DNA together and relieves DNA torsional tension.
    Witte SJ; Rosa IM; Collingwood BW; Piscitelli JM; Manhart CM
    Nucleic Acids Res; 2023 Apr; 51(6):2725-2739. PubMed ID: 36840719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutation in EXO1 defines separable roles in DNA mismatch repair and post-replication repair.
    Tran PT; Fey JP; Erdeniz N; Gellon L; Boiteux S; Liskay RM
    DNA Repair (Amst); 2007 Nov; 6(11):1572-83. PubMed ID: 17602897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.