These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 19420452)

  • 1. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Leroy F; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2010 Feb; 21(7):75704. PubMed ID: 20081296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC
    J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intriguing thermal conductivity of ice nanotubes.
    Guo Z; Zhang D; Zhai Y; Gong XG
    Nanotechnology; 2010 Jul; 21(28):285706. PubMed ID: 20585161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Müller-Plathe F; Böhm MC
    J Chem Phys; 2011 Nov; 135(18):184905. PubMed ID: 22088079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity of carbon nanotube cross-bar structures.
    Evans WJ; Keblinski P
    Nanotechnology; 2010 Nov; 21(47):475704. PubMed ID: 21030762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST; Cahill DG; Shenogin S; Xue L; Ozisik R; Barone P; Usrey M; Strano MS; Siddons G; Shim M; Keblinski P
    Nat Mater; 2003 Nov; 2(11):731-4. PubMed ID: 14556001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q; Liu C; Wang X; Fan S
    Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity of carbon nanotubes with quantum correction via heat capacity.
    Wu MC; Hsu JY
    Nanotechnology; 2009 Apr; 20(14):145401. PubMed ID: 19420526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.
    Li B; Wang J; Wang L; Zhang G
    Chaos; 2005 Mar; 15(1):15121. PubMed ID: 15836298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes.
    Pradhan NR; Duan H; Liang J; Iannacchione GS
    Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW; Cao BY; Guo ZY
    Nanotechnology; 2009 Dec; 20(49):495503. PubMed ID: 19893145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F
    J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality and Diameter Influence on Thermal Conductivity of Single-Walled Carbon Nanotubes.
    Feng Y; Zhu J; Tang DW
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3092-7. PubMed ID: 26353541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes.
    Kim UJ; Gutiérrez HR; Kim JP; Eklund PC
    J Phys Chem B; 2005 Dec; 109(49):23358-65. PubMed ID: 16375307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.