These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19420455)

  • 41. The electronic properties of an oxygen vacancy at ZrO(2)-terminated (001) surfaces of a cubic PbZrO(3): computer simulations from the first principles.
    Kotomin EA; Piskunov S; Zhukovskii YF; Eglitis RI; Gopejenko A; Ellis DE
    Phys Chem Chem Phys; 2008 Aug; 10(29):4258-63. PubMed ID: 18633546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface lattice dynamics and electron-phonon interaction in ultrathin Bi(111) film.
    Huang GQ; Yang J
    J Phys Condens Matter; 2013 May; 25(17):175004. PubMed ID: 23552259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The impact of surface and retardation losses on valence electron energy-loss spectroscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2008 Jan; 108(2):84-99. PubMed ID: 17481821
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics investigations on the size-dependent ferroelectric behavior of BaTiO3 nanowires.
    Zhang Y; Hong J; Liu B; Fang D
    Nanotechnology; 2009 Oct; 20(40):405703. PubMed ID: 19738302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transition from Molecular Vibrations to Phonons in Atomically Precise Cadmium Selenide Quantum Dots.
    Beecher AN; Dziatko RA; Steigerwald ML; Owen JS; Crowther AC
    J Am Chem Soc; 2016 Dec; 138(51):16754-16763. PubMed ID: 27982584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots.
    Kelley AM
    J Chem Phys; 2016 Jun; 144(21):214702. PubMed ID: 27276961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental and Computational Studies of the Structure of CdSe Magic-Size Clusters.
    Dmitruk I; Belosludov RV; Dmytruk A; Noda Y; Barnakov Y; Park YS; Kasuya A
    J Phys Chem A; 2020 Apr; 124(17):3398-3406. PubMed ID: 32237748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of phonons in semiconductor nanocrystals via femtosecond pulse chirp-influenced wavepacket dynamics and polarization.
    Mooney J; Saari JI; Kelley AM; Krause MM; Walsh BR; Kambhampati P
    J Phys Chem B; 2013 Dec; 117(49):15651-8. PubMed ID: 24131171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered.
    Park HS
    Nanotechnology; 2009 Mar; 20(11):115701. PubMed ID: 19420449
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First-Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S
    Domnin AV; Bandura AV; Evarestov RA
    J Comput Chem; 2020 Mar; 41(8):759-768. PubMed ID: 31828832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electronic and structural properties of the (1010) and (1120) ZnO surfaces.
    Marana NL; Longo VM; Longo E; Martins JB; Sambrano JR
    J Phys Chem A; 2008 Sep; 112(38):8958-63. PubMed ID: 18593138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy.
    Spirkoska D; Abstreiter G; Fontcuberta I Morral A
    Nanotechnology; 2008 Oct; 19(43):435704. PubMed ID: 21832708
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires.
    Fu XW; Liao ZM; Liu R; Xu J; Yu D
    ACS Nano; 2013 Oct; 7(10):8891-8. PubMed ID: 24047124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anharmonic vibrational properties of explosives from temperature-dependent Raman.
    McGrane SD; Barber J; Quenneville J
    J Phys Chem A; 2005 Nov; 109(44):9919-27. PubMed ID: 16838908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbynes phonons: a tight binding force field.
    Milani A; Tommasini M; Zerbi G
    J Chem Phys; 2008 Feb; 128(6):064501. PubMed ID: 18282050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Observation of phonon sideband emission in intrinsic InN nanowires: a photoluminescence and micro-Raman scattering study.
    Zhao S; Wang Q; Mi Z; Fathololoumi S; Gonzalez T; Andrews MP
    Nanotechnology; 2012 Oct; 23(41):415706. PubMed ID: 23018196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. First-principles calculations of the stability and electronic properties of the PbTiO3 (110) polar surface.
    Zhang GX; Xie Y; Yu HT; Fu HG
    J Comput Chem; 2009 Sep; 30(12):1785-98. PubMed ID: 19090567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface phonon dispersion on hydrogen-terminated Si(110)-(1 × 1) surfaces studied by first-principles calculations.
    Matsushita SY; Hu C; Kawamoto E; Kato H; Watanabe K; Suto S
    J Chem Phys; 2015 Dec; 143(21):214702. PubMed ID: 26646884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation.
    Kuleyev II; Kuleyev IG
    J Phys Condens Matter; 2019 Sep; 31(37):375701. PubMed ID: 31167176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.