These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19420483)

  • 1. Molecular dynamics study of damage production in single-walled carbon nanotubes irradiated by various ion species.
    Xu Z; Zhang W; Zhu Z; Huai P
    Nanotechnology; 2009 Mar; 20(12):125706. PubMed ID: 19420483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between polymers and carbon nanotubes: a molecular dynamics study.
    Yang M; Koutsos V; Zaiser M
    J Phys Chem B; 2005 May; 109(20):10009-14. PubMed ID: 16852210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.
    Cang-Rong JT; Pastorin G
    Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of narrow carbon nanotubes with nitronium tetrafluoroborate salts.
    Cabria I; López MJ; Alonso JA
    J Chem Phys; 2008 Jun; 128(21):214703. PubMed ID: 18537443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irradiation damage determined field emission of ion irradiated carbon nanotubes.
    Deng JH; Hou XG; Cheng L; Wang FJ; Yu B; Li GZ; Li DJ; Cheng GA; Wu S
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5137-43. PubMed ID: 24621129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism(s) and the design of SALDI substrates.
    Tang HW; Ng KM; Lu W; Che CM
    Anal Chem; 2009 Jun; 81(12):4720-9. PubMed ID: 19449861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorbate-induced defect formation and annihilation on graphene and single-walled carbon nanotubes.
    Tsetseris L; Pantelides ST
    J Phys Chem B; 2009 Jan; 113(4):941-4. PubMed ID: 19132838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airway barrier dysfunction induced by exposure to carbon nanotubes in vitro: which role for fiber length?
    Rotoli BM; Bussolati O; Barilli A; Zanello PP; Bianchi MG; Magrini A; Pietroiusti A; Bergamaschi A; Bergamaschi E
    Hum Exp Toxicol; 2009 Jun; 28(6-7):361-8. PubMed ID: 19755447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling mechanical energy storage in springs based on carbon nanotubes.
    Hill FA; Havel TF; Livermore C
    Nanotechnology; 2009 Jun; 20(25):255704. PubMed ID: 19491467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion beam analyses of carbon nanotubes.
    Naab FU; Holland OW; Duggan JL; McDaniel FD
    J Phys Chem B; 2005 Feb; 109(4):1415-9. PubMed ID: 16851111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study.
    Zhao S; Xue J; Wang Y; Yan S
    Nanotechnology; 2012 Jul; 23(28):285703. PubMed ID: 22728427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and size effects on diffusion in carbon nanotubes.
    Jakobtorweihen S; Keil FJ; Smit B
    J Phys Chem B; 2006 Aug; 110(33):16332-6. PubMed ID: 16913760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube reservoirs for self-healing materials.
    Lanzara G; Yoon Y; Liu H; Peng S; Lee WI
    Nanotechnology; 2009 Aug; 20(33):335704. PubMed ID: 19636099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic functionalisation and characterisation of single-walled carbon nanotubes.
    Singh P; Campidelli S; Giordani S; Bonifazi D; Bianco A; Prato M
    Chem Soc Rev; 2009 Aug; 38(8):2214-30. PubMed ID: 19623345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atom collision-induced resistivity of carbon nanotubes.
    Romero HE; Bolton K; Rosén A; Eklund PC
    Science; 2005 Jan; 307(5706):89-93. PubMed ID: 15637273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of carbon nanotubes on primary neurons and glial cells.
    Belyanskaya L; Weigel S; Hirsch C; Tobler U; Krug HF; Wick P
    Neurotoxicology; 2009 Jul; 30(4):702-11. PubMed ID: 19465056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement in hydrogen storage in carbon nanotubes under modified conditions.
    Banerjee S; Puri IK
    Nanotechnology; 2008 Apr; 19(15):155702. PubMed ID: 21825626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes.
    Chen Q; Wang Q; Liu YC; Wu T; Kang Y; Moore JD; Gubbins KE
    J Chem Phys; 2009 Jul; 131(1):015101. PubMed ID: 19586122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of carbon nanotubes with Vaska's complex: a theoretical approach.
    Mercuri F; Sgamellotti A
    J Phys Chem B; 2006 Aug; 110(31):15291-4. PubMed ID: 16884247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling electronic structures by irradiation in single-walled SiC nanotubes: a first-principles molecular dynamics study.
    Wang Z; Gao F; Li J; Zu X; Weber WJ
    Nanotechnology; 2009 Feb; 20(7):075708. PubMed ID: 19417436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.