BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 19420485)

  • 1. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release.
    Tai LA; Tsai PJ; Wang YC; Wang YJ; Lo LW; Yang CS
    Nanotechnology; 2009 Apr; 20(13):135101. PubMed ID: 19420485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.
    Purushotham S; Chang PE; Rumpel H; Kee IH; Ng RT; Chow PK; Tan CK; Ramanujan RV
    Nanotechnology; 2009 Jul; 20(30):305101. PubMed ID: 19581698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery.
    Talelli M; Rijcken CJ; Lammers T; Seevinck PR; Storm G; van Nostrum CF; Hennink WE
    Langmuir; 2009 Feb; 25(4):2060-7. PubMed ID: 19166276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Heating Stimulated Cargo Release with Dose Control using Multifunctional MR and Thermosensitive Liposome.
    Ray S; Cheng CA; Chen W; Li Z; Zink JI; Lin YY
    Nanotheranostics; 2019; 3(2):166-178. PubMed ID: 31183312
    [No Abstract]   [Full Text] [Related]  

  • 5. Controllable release from magnetoliposomes by magnetic stimulation and thermal stimulation.
    Qiu D; An X
    Colloids Surf B Biointerfaces; 2013 Apr; 104():326-9. PubMed ID: 23290769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic multilamellar liposomes produced by in situ synthesis of iron oxide nanoparticles: "magnetonions".
    Faure C; Meyre ME; Trépout S; Lambert O; Lebraud E
    J Phys Chem B; 2009 Jun; 113(25):8552-9. PubMed ID: 19534563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin.
    Cengelli F; Grzyb JA; Montoro A; Hofmann H; Hanessian S; Juillerat-Jeanneret L
    ChemMedChem; 2009 Jun; 4(6):988-97. PubMed ID: 19347834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin.
    Narain R; Gonzales M; Hoffman AS; Stayton PS; Krishnan KM
    Langmuir; 2007 May; 23(11):6299-304. PubMed ID: 17451262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic gamma-Fe2O3 nanoparticles.
    Rubio-Retama J; Zafeiropoulos NE; Serafinelli C; Rojas-Reyna R; Voit B; Cabarcos EL; Stamm M
    Langmuir; 2007 Sep; 23(20):10280-5. PubMed ID: 17718580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-mannose-modified iron oxide nanoparticles for stem cell labeling.
    Horak D; Babic M; Jendelová P; Herynek V; Trchová M; Pientka Z; Pollert E; Hájek M; Syková E
    Bioconjug Chem; 2007; 18(3):635-44. PubMed ID: 17370996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-field controlled liposome formation with embedded superparamagnetic iron oxide nanoparticles.
    Eleršič K; Pavlič JI; Iglič A; Vesel A; Mozetič M
    Chem Phys Lipids; 2012 Jan; 165(1):120-4. PubMed ID: 22133728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging.
    Huang H; Xie Q; Kang M; Zhang B; Zhang H; Chen J; Zhai C; Yang D; Jiang B; Wu Y
    Nanotechnology; 2009 Sep; 20(36):365101. PubMed ID: 19687538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified iron oxide nanoparticles as solid phase extractor for spectrophotometeric determination and separation of basic fuchsin.
    Zargar B; Parham H; Hatamie A
    Talanta; 2009 Feb; 77(4):1328-31. PubMed ID: 19084644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI contrast variation of thermosensitive magnetoliposomes triggered by focused ultrasound: a tool for image-guided local drug delivery.
    Lorenzato C; Cernicanu A; Meyre ME; Germain M; Pottier A; Levy L; de Senneville BD; Bos C; Moonen C; Smirnov P
    Contrast Media Mol Imaging; 2013; 8(2):185-92. PubMed ID: 23281291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic nanocomposite sol-gel systems for remote controlled drug release.
    Hawkins AM; Bottom CE; Liang Z; Puleo DA; Hilt JZ
    Adv Healthc Mater; 2012 Jan; 1(1):96-100. PubMed ID: 23184692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate.
    Djanashvili K; ten Hagen TL; Blangé R; Schipper D; Peters JA; Koning GA
    Bioorg Med Chem; 2011 Feb; 19(3):1123-30. PubMed ID: 20624680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of iron oxide-entrapped chitosan nanoparticles for stem cell labeling.
    Chaleawlert-Umpon S; Mayen V; Manotham K; Pimpha N
    J Biomater Sci Polym Ed; 2010; 21(11):1515-32. PubMed ID: 20537238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR characterization of mild hyperthermia-induced gadodiamide release from thermosensitive liposomes in solid tumors.
    Peller M; Schwerdt A; Hossann M; Reinl HM; Wang T; Sourbron S; Ogris M; Lindner LH
    Invest Radiol; 2008 Dec; 43(12):877-92. PubMed ID: 19002060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart photothermal-triggered bilayer phase transition in AuNPs-liposomes to release drug.
    An X; Zhan F; Zhu Y
    Langmuir; 2013 Jan; 29(4):1061-8. PubMed ID: 23286691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.