BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19420526)

  • 1. Thermal conductivity of carbon nanotubes with quantum correction via heat capacity.
    Wu MC; Hsu JY
    Nanotechnology; 2009 Apr; 20(14):145401. PubMed ID: 19420526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules.
    Cui L; Feng Y; Zhang X
    Phys Chem Chem Phys; 2015 Nov; 17(41):27520-6. PubMed ID: 26426675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance.
    Diao J; Srivastava D; Menon M
    J Chem Phys; 2008 Apr; 128(16):164708. PubMed ID: 18447480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes.
    Pradhan NR; Duan H; Liang J; Iannacchione GS
    Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear thermal conductance in single-wall carbon nanotubes: negative differential thermal resistance.
    Ai BQ; An M; Zhong WR
    J Chem Phys; 2013 Jan; 138(3):034708. PubMed ID: 23343294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid structure and transport properties of water inside carbon nanotubes.
    Liu Y; Wang Q; Wu T; Zhang L
    J Chem Phys; 2005 Dec; 123(23):234701. PubMed ID: 16392938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of thermal resistance at the liquid-solid interface.
    Kim BH; Beskok A; Cagin T
    J Chem Phys; 2008 Nov; 129(17):174701. PubMed ID: 19045364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites.
    Duong HM; Yamamoto N; Papavassiliou DV; Maruyama S; Wardle BL
    Nanotechnology; 2009 Apr; 20(15):155702. PubMed ID: 19420554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics.
    Zhou Y; Anglin B; Strachan A
    J Chem Phys; 2007 Nov; 127(18):184702. PubMed ID: 18020653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC
    J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-triggered carbon nanotube microdevice for remote control of biocatalytic reactions.
    Miyako E; Nagata H; Hirano K; Hirotsu T
    Lab Chip; 2009 Mar; 9(6):788-94. PubMed ID: 19255660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.
    Li B; Wang J; Wang L; Zhang G
    Chaos; 2005 Mar; 15(1):15121. PubMed ID: 15836298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method.
    Sarkar S; Zimmermann K; Leng W; Vikesland P; Zhang J; Dorn H; Diller T; Rylander C; Rylander MN
    Ann Biomed Eng; 2011 Jun; 39(6):1745-58. PubMed ID: 21360225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.
    Hsieh CT; Lee CE; Chen YF; Chang JK; Teng HS
    Nanoscale; 2015 Nov; 7(44):18663-70. PubMed ID: 26498343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q; Liu C; Wang X; Fan S
    Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conduction in molecular materials using coarse grain dynamics: role of mass diffusion and quantum corrections for molecular dynamics simulations.
    Zhou Y; Strachan A
    J Chem Phys; 2009 Dec; 131(23):234113. PubMed ID: 20025320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics.
    Liu R; Wang L
    Phys Chem Chem Phys; 2015 Feb; 17(7):5194-201. PubMed ID: 25599883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.