These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19420527)

  • 1. Silicon-doped carbon nanotubes: a potential resource for the detection of chlorophenols/chlorophenoxy radicals.
    Jiang H; Zhang D; Wang R
    Nanotechnology; 2009 Apr; 20(14):145501. PubMed ID: 19420527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties for the complete series reactions of chlorophenols with OH radicals-relevance for dioxin formation.
    Xu F; Wang H; Zhang Q; Zhang R; Qu X; Wang W
    Environ Sci Technol; 2010 Feb; 44(4):1399-404. PubMed ID: 20092302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum chemical investigation of formation of polychlorodibenzo-p-dioxins and dibenzofurans from oxidation and pyrolysis of 2-chlorophenol.
    Altarawneh M; Dlugogorski BZ; Kennedy EM; Mackie JC
    J Phys Chem A; 2007 Apr; 111(13):2563-73. PubMed ID: 17388333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dioxins, chlorophenols and other chlorinated organic pollutants in colloidal and water fractions of groundwater from a contaminated sawmill site.
    Persson Y; Shchukarev A; Oberg L; Tysklind M
    Environ Sci Pollut Res Int; 2008 Sep; 15(6):463-71. PubMed ID: 18521643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide.
    Wang R; Zhang D; Liu Y; Liu C
    Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions.
    Weber R; Hagenmaier H
    Chemosphere; 1999 Feb; 38(3):529-49. PubMed ID: 10901672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum chemical and kinetic study of formation of 2-chlorophenoxy radical from 2-chlorophenol: unimolecular decomposition and bimolecular reactions with H, OH, Cl, and O2.
    Altarawneh M; Dlugogorski BZ; Kennedy EM; Mackie JC
    J Phys Chem A; 2008 Apr; 112(16):3680-92. PubMed ID: 18380495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel chemical sensor for cyanides: boron-doped carbon nanotubes.
    Zhang Y; Zhang D; Liu C
    J Phys Chem B; 2006 Mar; 110(10):4671-4. PubMed ID: 16526700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxin formations from the radical/radical cross-condensation of phenoxy radicals with 2-chlorophenoxy radicals and 2,4,6-trichlorophenoxy radicals.
    Xu F; Yu W; Gao R; Zhou Q; Zhang Q; Wang W
    Environ Sci Technol; 2010 Sep; 44(17):6745-51. PubMed ID: 20695428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning.
    Zhang S; Koziol KK; Kinloch IA; Windle AH
    Small; 2008 Aug; 4(8):1217-22. PubMed ID: 18666161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain effects on work functions of pristine and potassium-decorated carbon nanotubes.
    Yongqing C; Zhang A; Ping Feng Y; Zhang C; Fatt Teoh H; Wei Ho G
    J Chem Phys; 2009 Dec; 131(22):224701. PubMed ID: 20001070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas sensing properties of platinum derivatives of single-walled carbon nanotubes: A DFT analysis.
    Pannopard P; Khongpracha P; Probst M; Limtrakul J
    J Mol Graph Model; 2009 Aug; 28(1):62-9. PubMed ID: 19473862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes.
    Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y
    Small; 2009 Aug; 5(15):1769-75. PubMed ID: 19360721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: experimental and DFT studies.
    Diaz-Flores PE; López-Urías F; Terrones M; Rangel-Mendez JR
    J Colloid Interface Sci; 2009 Jun; 334(2):124-31. PubMed ID: 19403143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotubes: biomaterial applications.
    Saito N; Usui Y; Aoki K; Narita N; Shimizu M; Hara K; Ogiwara N; Nakamura K; Ishigaki N; Kato H; Taruta S; Endo M
    Chem Soc Rev; 2009 Jul; 38(7):1897-903. PubMed ID: 19551170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction.
    Jiménez-Soto JM; Cárdenas S; Valcárcel M
    J Chromatogr A; 2009 Jul; 1216(30):5626-33. PubMed ID: 19524931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes.
    Peng Y; Wang X; Xiao Y; Feng L; Zhao C; Ren J; Qu X
    J Am Chem Soc; 2009 Sep; 131(38):13813-8. PubMed ID: 19736925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution redox chemistry of carbon nanotubes.
    Zheng M; Diner BA
    J Am Chem Soc; 2004 Dec; 126(47):15490-4. PubMed ID: 15563177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde.
    Wang R; Zhang D; Zhang Y; Liu C
    J Phys Chem B; 2006 Sep; 110(37):18267-71. PubMed ID: 16970445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gaussian-3X prediction on the enthalpies of formation of chlorinated phenols and dibenzo-p-dioxins.
    Wang L; Heard DE; Pilling MJ; Seakins P
    J Phys Chem A; 2008 Feb; 112(8):1832-40. PubMed ID: 18232671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.