These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19420529)

  • 1. Conversion of single-crystalline C60 nanodisks and nanorods into graphitic nanostructures via hydrogen thermal annealing.
    Lim H; Shin HS; Song HJ; Choi HC
    Nanotechnology; 2009 Apr; 20(14):145601. PubMed ID: 19420529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports.
    Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB
    Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-based 1D nanostructures by electrospinning process.
    Eid C; Brioude A; Salles V; Plenet JC; Asmar R; Monteil Y; Khoury R; Khoury A; Miele P
    Nanotechnology; 2010 Mar; 21(12):125701. PubMed ID: 20182009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-coated single-crystalline zinc sulfide nanowires.
    Shen G; Bando Y; Golberg D
    J Phys Chem B; 2006 Oct; 110(42):20777-80. PubMed ID: 17048886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying disorder in graphite-based systems by Raman spectroscopy.
    Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R
    Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes.
    Zhang G; Qi P; Wang X; Lu Y; Mann D; Li X; Dai H
    J Am Chem Soc; 2006 May; 128(18):6026-7. PubMed ID: 16669658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of hydrophilic, bamboo-shaped multiwalled carbon nanotubes by solid-state pyrolysis and its electrochemical studies.
    Shanmugam S; Gedanken A
    J Phys Chem B; 2006 Feb; 110(5):2037-44. PubMed ID: 16471780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of nitrogen-doped carbon nanostructures by the reactions of small molecule carbon halides with sodium azide.
    Wu C; Guo Q; Yin P; Li T; Yang Q; Xie Y
    J Phys Chem B; 2005 Feb; 109(7):2597-604. PubMed ID: 16851263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint.
    do Nascimento GM; Silva CH; Izumi CM; Temperini ML
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):869-75. PubMed ID: 18343714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene-like carbon.
    Pol SV; Pol VG; Frydman A; Churilov GN; Gedanken A
    J Phys Chem B; 2005 May; 109(19):9495-8. PubMed ID: 16852141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective etching of thin single-walled carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts.
    Xue S; Zhang X; Huang R; Zhuang H; Xue C
    Dalton Trans; 2008 Aug; (32):4296-302. PubMed ID: 18682869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process.
    Pal U; Santiago P
    J Phys Chem B; 2005 Aug; 109(32):15317-21. PubMed ID: 16852941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical ZnO nanostructures: growth and optical properties.
    Umar A; Al Hajry A; Al-Heniti S; Hahn YB
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6355-60. PubMed ID: 19205206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis.
    Qin Y; Jiang X; Cui Z
    J Phys Chem B; 2005 Nov; 109(46):21749-54. PubMed ID: 16853825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Synthetic Conditions on the Structural and Electrochemical Properties of Carbon Nano-Onions.
    Mykhailiv O; Lapinski A; Molina-Ontoria A; Regulska E; Echegoyen L; Dubis AT; Plonska-Brzezinska ME
    Chemphyschem; 2015 Jul; 16(10):2182-91. PubMed ID: 26017555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.
    Wang RC; Gao YS; Chen SJ
    Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.