These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19420532)

  • 21. Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method.
    Sarkar S; Zimmermann K; Leng W; Vikesland P; Zhang J; Dorn H; Diller T; Rylander C; Rylander MN
    Ann Biomed Eng; 2011 Jun; 39(6):1745-58. PubMed ID: 21360225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature dependence of the Raman spectra of individual carbon nanotubes.
    Zhou Z; Dou X; Ci L; Song L; Liu D; Gao Y; Wang J; Liu L; Zhou W; Xie S; Wan D
    J Phys Chem B; 2006 Jan; 110(3):1206-9. PubMed ID: 16471665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method.
    Chung J; Kim K; Hwang G; Kwon O; Jung S; Lee J; Lee JW; Kim GT
    Rev Sci Instrum; 2010 Nov; 81(11):114901. PubMed ID: 21133490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method.
    Moon J; Weaver K; Feng B; Chae HG; Kumar S; Baek JB; Peterson GP
    Rev Sci Instrum; 2012 Jan; 83(1):016103. PubMed ID: 22299999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes.
    Skákalová V; Kaiser AB; Dettlaff-Weglikowska U; Hrncariková K; Roth S
    J Phys Chem B; 2005 Apr; 109(15):7174-81. PubMed ID: 16851818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The thermal flash technique: the inconsequential effect of contact resistance and the characterization of carbon nanotube clusters.
    Mahanta NK; Abramson AR
    Rev Sci Instrum; 2012 May; 83(5):054904. PubMed ID: 22667641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz.
    Ozel T; Abdula D; Hwang E; Shim M
    ACS Nano; 2009 Aug; 3(8):2217-24. PubMed ID: 19642686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal emission spectra from individual suspended carbon nanotubes.
    Liu Z; Bushmaker A; Aykol M; Cronin SB
    ACS Nano; 2011 Jun; 5(6):4634-40. PubMed ID: 21545117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal annealing effects on multi-walled carbon nanotube yarns probed by Raman spectroscopy.
    Pierlot AP; Woodhead AL; Church JS
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():598-603. PubMed ID: 24103230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells.
    Rotoli BM; Bussolati O; Bianchi MG; Barilli A; Balasubramanian C; Bellucci S; Bergamaschi E
    Toxicol Lett; 2008 May; 178(2):95-102. PubMed ID: 18403140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes.
    Lin Y; Watson KA; Fallbach MJ; Ghose S; Smith JG; Delozier DM; Cao W; Crooks RE; Connell JW
    ACS Nano; 2009 Apr; 3(4):871-84. PubMed ID: 19278218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.
    Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments.
    Chen S; Moore AL; Cai W; Suk JW; An J; Mishra C; Amos C; Magnuson CW; Kang J; Shi L; Ruoff RS
    ACS Nano; 2011 Jan; 5(1):321-8. PubMed ID: 21162551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube.
    Hirotani J; Ikuta T; Nishiyama T; Takahashi K
    J Phys Condens Matter; 2013 Jan; 25(2):025301. PubMed ID: 23196929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films.
    Itkis ME; Borondics F; Yu A; Haddon RC
    Science; 2006 Apr; 312(5772):413-6. PubMed ID: 16627739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction.
    Qin LC
    Phys Chem Chem Phys; 2007 Jan; 9(1):31-48. PubMed ID: 17164886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-precision apparatus for the characterization of thermal interface materials.
    Kempers R; Kolodner P; Lyons A; Robinson AJ
    Rev Sci Instrum; 2009 Sep; 80(9):095111. PubMed ID: 19791968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method.
    Feng B; Ma W; Li Z; Zhang X
    Rev Sci Instrum; 2009 Jun; 80(6):064901. PubMed ID: 19566218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.